【引用本文】 吴磊, 刘义博, 王家松, 等. 高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J]. 岩矿测试, 2018, 37(6): 637-643. doi: 10.15898/j.cnki.11-2131/td.201712060189
WU Lei, LIU Yi-bo, WANG Jia-song, et al. Sample Treatment Methods for Determination of Rare Earth Elements in Manganese Ore by High-pressure Closed Digestion-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 637-643. doi: 10.15898/j.cnki.11-2131/td.201712060189

高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究

1. 

中国地质调查局天津地质调查中心, 天津 300170

2. 

中国地质调查局泥质海岸带地质环境重点实验室, 天津 300170

收稿日期: 2017-12-06  修回日期: 2018-05-30  接受日期: 2018-06-11

基金项目: 中国地质调查局地质调查项目“地质调查标准制修订与升级推广”(DD20160094)

作者简介: 吴磊, 高级工程师, 从事岩矿分析测试工作。E-mail:a_lei82@163.com

Sample Treatment Methods for Determination of Rare Earth Elements in Manganese Ore by High-pressure Closed Digestion-Inductively Coupled Plasma-Mass Spectrometry

1. 

Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, China

2. 

Key Laboratory of Muddy Coast Geo-Environment, China Geological Survey, Tianjin 300170, China

Received Date: 2017-12-06
Revised Date: 2018-05-30
Accepted Date: 2018-06-11

摘要:高压密闭消解因称样量小、用酸量少、空白低等优点成为测定稀土元素前处理的主要方法。但锰矿石组分复杂,锰含量差别较大且具有多种不同价态,常含有伴(共)生金属和其他杂质,该方法采用常规酸溶体系很难将其消解完全,造成ICP-MS测试结果不准确。本文从样品前处理消解效果出发,选择锰矿石标准物质GBW07261、GBW07263、GBW07266和一个锰矿石样品,试验了三种酸溶前处理方法对锰矿石稀土元素测试的影响。结果表明:方法一(氢氟酸-硝酸密闭消解,硝酸复溶提取)不能将锰矿石样品完全消解,测定值偏低0.28%~61.31%;方法二(氢氟酸-硝酸-双氧水密闭消解,硝酸-双氧水复溶,硝酸提取)和方法三(氢氟酸-硝酸密闭消解,盐酸复溶,硝酸提取)均可将锰矿石样品消解完全,用ICP-MS测定稀土元素的数据较为接近,与传统的过氧化钠熔融ICP-MS法测定值吻合。但实验过程中发现对于锰含量较高的样品,方法三需多次重复加入盐酸复溶后方可将样品消解完全,而方法二复溶一次即可。因此,方法二对锰矿石样品的消解效率更高,精密度好(0.96%~2.68%),加标回收率在95.0%~107.0%之间,更适用于锰矿石中稀土元素的分析。

关键词: 锰矿石, 稀土元素, 高压密闭消解, 双氧水, 电感耦合等离子体质谱法

要点

(1) 选取锰含量差别较大的三种锰矿石标准物质和一个锰矿石未知样品进行了实验。

(2) 通过ICP-MS测定稀土元素数据,对比三种高压密闭消解方法的酸溶体系对于锰矿石的消解效果。

(3) 双氧水的强氧化性和催化性能是保证较高锰含量样品消解效果的关键。

Sample Treatment Methods for Determination of Rare Earth Elements in Manganese Ore by High-pressure Closed Digestion-Inductively Coupled Plasma-Mass Spectrometry

ABSTRACT

BACKGROUND:

With advantages of small sample quantity, less acid, and low blank, high-pressure closed digestion-Inductively Coupled Plasma-Mass Spectrometry became the main method in the determination of rare earth elements. However, the composition of manganese ore is complex with varying manganese contents and different valence states of Mn, often with accompanying (co)producing metals and other impurities. The ore is difficult to digest completely using conventional acid-soluble systems, resulting in inaccurate ICP-MS analytical results.

OBJECTIVES:

To optimize the acid-solution system condition of the high-pressure closed digestion method, in order to completely and effectively digest the manganese ore with complex components and improve the accuracy of the results.

METHODS:

Three standards GBW07261, GBW07263, GBW07266 and an unknown sample of manganese ore were digested using three different acid-solution systems of high-pressure closed digestion:Hydrofluoric acid-nitric acid closed digestion, extracted with nitric acid (Method 1); Hydrofluoric acid-nitric acid-hydrogen peroxide closed digestion, redissolved with nitric acid-hydrogen peroxide, extracted with nitric acid (Method 2); Hydrofluoric acid-nitric acid closed digestion, redissolved with hydrochloric acid, extracted with nitric acid (Method 3). The contents of rare-earth elements were then determined by ICP-MS.

RESULTS:

Methods 2 and Methods 3 can completely digest manganese ore samples. The results of rare-earth elements by ICP-MS were similar, and were consistent with the results of conventional sodium peroxide fusion. However, during the experimental process, for samples with high manganese content, Method 3 required repeated additions of hydrochloric acid before the samples were completely digested, whereas Method 2 need only one repeat. The precision of Method 2 was 0.96%-2.68%, and the recovery was 95.0%-107.0%.

CONCLUSIONS:

For different manganese ore samples, Method 2 can completely digest the samples. The determination of rare earth elements was reliable by ICP-MS. Method 2 was the most suitable sample digestion method for the determination of rare earth elements in manganese ores.

KEY WORDS: manganese ore, rare earth elements, high-pressure closed digestion, hydrogen peroxide, Inductively Coupled Plasma-Mass Spectrometry

HIGHLIGHTS

(1) Three manganese ore standard references with different manganese contents and an unknown sample of manganese ore were selected for experiments.

(2) Concentrations of rare-earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for comparing the digestion effect of three high-pressure closed digestion methods for manganese ore.

(3) The strong oxidative and catalytic properties of hydrogen peroxide were the key to ensure the digestion effect of manganese ore samples with higher manganese content.

本文参考文献

[1]

曹煊, 李景喜, 余晶晶, 等. 电感耦合等离子体质谱法测定井间示踪剂中稀土元素[J]. 岩矿测试, 2009, 28(2): 91-96. doi: 10.3969/j.issn.0254-5357.2009.02.001

Cao X, Li J X, Yu J J, et al. Determination of rare earth elements in inter-well tracers by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2009, 28(2): 91-96. doi: 10.3969/j.issn.0254-5357.2009.02.001

[2]

杨小丽, 崔森, 杨梅, 等. 碱熔离子交换-电感耦合等离子体质谱法测定多金属矿中痕量稀土元素[J]. 冶金分析, 2011, 31(3): 11-16. doi: 10.3969/j.issn.1000-7571.2011.03.003

Yang X L, Cui S, Yang M, et al. Determination of rare earth elements in polymetallic ore by inductively coupled plasma-mass spectrometry after alkali fusion and ion exchange[J].Metallurgical Analysis, 2011, 31(3): 11-16. doi: 10.3969/j.issn.1000-7571.2011.03.003

[3]

安正泽, 张仁彪, 陈甲才, 等. 贵州省松桃县道坨超大型锰矿床的发现及其成因探讨[J]. 矿床地质, 2014, 33(4): 870-884. doi: 10.3969/j.issn.0258-7106.2014.04.016

An Z Z, Zhang R B, Chen J C, et al. Geological and geochemical characteristics of Daotuo superlarge manganese ore deposit in Songtao county of Guizhou Province:Constraint on formation mechanism of Mn-carbonate ores[J].Mineral Deposits, 2014, 33(4): 870-884. doi: 10.3969/j.issn.0258-7106.2014.04.016

[4]

裴浩翔, 付勇, 徐志刚, 等. 贵州道坨锰矿菱锰矿的稀土元素特征[J]. 沉积与特提斯地质, 2015, 35(1): 76-85. doi: 10.3969/j.issn.1009-3850.2015.01.010

Pei H X, Fu Y, Xu Z G, et al. REE characteristics of rhodochrosite from the Daotuo manganese deposit in Guizhou[J].Sedimentary Geology and Tethyan Geology, 2015, 35(1): 76-85. doi: 10.3969/j.issn.1009-3850.2015.01.010

[5]

Zarasvandi A, Rezaei M, Sadeghi M, et al. Rare-earth element distribution and genesis of manganese ores associated with Tethyan ophiolites, Iran:A review[J].Mineralogical Magazine, 2016, 80(1): 127-142. doi: 10.1180/minmag.2016.080.054

[6]

徐静, 王志强, 李明来, 等. 电感耦合等离子体发射光谱法测定镝铁电解粉中15种稀土元素[J]. 冶金分析, 2013, 33(7): 25-29. doi: 10.3969/j.issn.1000-7571.2013.07.005

Xu J, Wang Z Q, Li M L, et al. Determination of fifteen rare earth elements in Dy-Fe electrolysis dust by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2013, 33(7): 25-29. doi: 10.3969/j.issn.1000-7571.2013.07.005

[7]

杜梅, 许涛, 吴文琪, 等. 稀土标准分析方法中稀土元素分析谱线的述评[J]. 稀土, 2014, 35(6): 99-103.

Du M, Xu T, Wu W Q, et al. Review of the analytical lines of rare earth elements in rare earth standard analysis methods[J]. Chinese Rare Earths, 2014, 35(6): 99-103.

[8]

刘晓杰, 郝茜, 金文莉, 等. ICP-AES法测定钕铁硼废料中稀土总量[J]. 稀土, 2014, 35(2): 88-91.

Liu X J, Hao Q, Jin W L, et al. Determination of tatal rare earth content in NdFeB waste by inductively coupled plasma-atomic emission spectrometry[J]. Chinese Rare Earths, 2014, 35(2): 88-91.

[9]

陈贺海, 荣德福, 付冉冉, 等. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素[J]. 岩矿测试, 2013, 32(5): 702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005

Chen H H, Rong D F, Fu R R, et al. Determination of fifteen rare-earth elements in iron ores using inductively coupled plasma mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2013, 32(5): 702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005

[10]

吴磊, 曾江萍, 刘义博, 等. 硼酸溶液敞口酸溶-电感耦合等离子体质谱法测定萤石中稀土元素[J]. 岩矿测试, 2014, 33(1): 20-24. doi: 10.3969/j.issn.0254-5357.2014.01.004

Wu L, Zeng J P, Liu Y B, et al. Determination of rare earth elements in fluorite samples by open boric acid dissolution and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(1): 20-24. doi: 10.3969/j.issn.0254-5357.2014.01.004

[11]

赵艳芳, 尚德荣, 翟毓秀, 等. 应用ICP-MS法研究我国三种经济海藻中稀土元素含量[J]. 光谱学与光谱分析, 2015, 35(11): 3196-3199.

Zhao Y F, Shang D R, Zhai Y X, et al. Application of ICP-MS to detect rare earth elements in three economic macroalgaes in China[J]. Spectroscopy and Spectral Analysis, 2015, 35(11): 3196-3199.

[12]

倪文山, 刘长淼, 姚明星, 等. 电感耦合等离子体质谱法测定磷灰石中稀土元素分量和总量[J]. 冶金分析, 2016, 36(7): 69-73.

Ni W S, Liu C M, Yao M X, et al. Determination of the total amount of rare earth elements and its component in apatite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 69-73.

[13]

李小莉, 张勤. 粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J]. 冶金分析, 2013, 33(7): 35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007

Li X L, Zhang Q. Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2013, 33(7): 35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007

[14]

杨小丽, 李小丹, 邹棣华, 等. 溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J]. 冶金分析, 2016, 36(7): 56-62.

Yang X L, Li X D, Zou D H, et al. Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma-mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7): 56-62.

[15]

吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39-45.

Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39-45.

[16]

陈小燕, 吕茜茜, 吴勇, 等. 电感耦合等离子体质谱法测定含铜物料中的16种稀土元素[J]. 理化检验(化学分册), 2016, 52(5): 545-548.

Chen X Y, Lü Q Q, Wu Y, et al. ICP-MS determination of 16 kinds of rare earth elements in materials containing copper[J]. Physical Testing and Chemistry Analysis Part B (Chemistry Analysis), 2016, 52(5): 545-548.

[17]

王佩佩, 李霄, 宋伟娇, 等. 微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J]. 分析测试学报, 2016, 35(2): 235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017

Wang P P, Li X, Song W J, et al. Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J].Journal of Instrumental Analysis, 2016, 35(2): 235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017

[18]

贾双琳, 赵平, 杨刚, 等. 混合酸敞开或高压密闭溶样-ICPMS测定地质样品中稀土元素[J]. 岩矿测试, 2014, 33(2): 186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005

Jia S L, Zhao P, Yang G, et al. Quick determination of rare earth elements in geological samples with open acid digestion or high-pressure closed digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005

[19]

高晶晶, 刘季花, 张辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素[J]. 岩矿测试, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007

Gao J J, Liu J H, Zhang H, et al. Determination of rare earth elements in the marine sediments by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Rock and Mineral Analysis, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007

[20]

岩石矿物分析编委会. 岩石矿物分析[M] (第四版 第二分册) . 北京: 地质出版社, 2011: 115-118.

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis[M] (Fourth Edition:Volume Ⅱ) . Beijing: Geological Publishing House, 2011: 115-118.

相似文献(共20条)

[1]

高晶晶, 刘季花, 张辉, 白亚之, 崔菁菁, 何连花. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素. 岩矿测试, 2012, 31(3): 425-429.

[2]

陈贺海, 荣德福, 付冉冉, 余清, 廖海平, 任春生, 鲍惠君. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素. 岩矿测试, 2013, 32(5): 702-708.

[3]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[4]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[5]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[6]

李志伟, 邰自安, 任文岩, 高志军, 李艳华. 微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素. 岩矿测试, 2010, 29(3): 259-262.

[7]

张楠, 徐铁民, 吴良英, 魏双, 方蓬达, 王家松. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素. 岩矿测试, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023

[8]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

[9]

郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素. 岩矿测试, 2014, 33(1): 25-28.

[10]

贾双琳, 赵平, 杨刚, 孙霞, 何海. 混合酸敞开或高压密闭溶样-ICPMS测定地质样品中稀土元素. 岩矿测试, 2014, 33(2): 186-191.

[11]

吴磊, 曾江萍, 刘义博, 吴良英, 张莉娟, 郝爽, 王家松. 硼酸溶液敞口酸溶-电感耦合等离子体质谱法测定萤石中稀土元素. 岩矿测试, 2014, 33(1): 20-24.

[12]

黎卫亮, 程秀花, 李忠煜, 王鹏. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素. 岩矿测试, 2017, 36(5): 468-473. doi: 10.15898/j.cnki.11-2131/td.201607130099

[13]

董学林, 何海洋, 储溱, 仇秀梅, 唐兴敏. 碱溶沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004

[14]

熊采华, 储溱, 赵志飞, 熊玉祥, 柳建一. 硝酸-氢氟酸酸溶电感耦合等离子体质谱法测定黑钨矿单矿物中稀土元素. 岩矿测试, 2012, 31(4): 602-606.

[15]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[16]

侍金敏, 冯廷建, 付鹏飞, 汤勇武, 陈大林, 张春翔, 燕娜. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素. 岩矿测试, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066

[17]

刘丛强, 马英军. 微波密闭消解-等离子体质谱法测定岩石样品中的稀土元素. 岩矿测试, 1999, (3): 189-192.

[18]

应立娟, 林彬, 王立强, 李超, 王阔. 应用电感耦合等离子体质谱法研究西藏甲玛超大型铜多金属矿床辉钼矿稀土元素和微量元素地球化学特征. 岩矿测试, 2015, 34(3): 366-374. doi: 10.15898/j.cnki.11-2131/td.2015.03.018

[19]

成学海, 夏传波, 郑建业, 张文娟, 刘晶. 封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素. 岩矿测试, 2017, 36(3): 231-238. doi: 10.15898/j.cnki.11-2131/td.201609220143

[20]

吴石头, 王亚平, 孙德忠, 温宏利, 许春雪, 王伟. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素————四种前处理方法的比较. 岩矿测试, 2014, 33(1): 12-19.

计量
  • PDF下载量(56)
  • 文章访问量(546)
  • HTML全文浏览量(204)
  • 被引次数(0)
目录

Figures And Tables

高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究

吴磊, 刘义博, 王家松, 吴良英, 张楠, 王娜