【引用本文】 周长松, 邹胜章, 谢浩, 等. 测试滞后对岩溶水样性质的影响研究[J]. 岩矿测试, 2019, 38(1): 92-101. doi: 10.15898/j.cnki.11-2131/td.201711040175
ZHOU Chang-song, ZOU Sheng-zhang, XIE Hao, et al. The Effect of Testing Lag on Chemical Indexes of Karst Water[J]. Rock and Mineral Analysis, 2019, 38(1): 92-101. doi: 10.15898/j.cnki.11-2131/td.201711040175

测试滞后对岩溶水样性质的影响研究

1. 

中国地质科学院岩溶地质研究所, 自然资源部广西岩溶动力学重点实验室, 自然资源部岩溶生态系统与石漠化治理重点实验室, 广西 桂林 541004

2. 

中国地质大学(北京)水资源与环境学院, 北京 100083

收稿日期: 2017-11-04  修回日期: 2018-03-26  接受日期: 2018-09-10

基金项目: 国家研发计划课题(2017YFC0406104);中国地质调查局地质调查项目(DD20160300,DD20160302);国家自然科学基金项目(41502342);广西自然科学基金面上项目(2016JJA150091,2017GXNSFAA198208,2015GXNSFBA139139188)

作者简介: 周长松, 硕士, 助理研究员, 研究方向为水文地质与环境地质。E-mail:zhouchangsongsx@163.com

通信作者: 邹胜章, 博士, 研究员, 研究方向为水文地质与环境地质。E-mail:zshzh@karst.ac.cn

The Effect of Testing Lag on Chemical Indexes of Karst Water

1. 

Institute of Karst Geology, Chinese Academy of Geological Sciences; Karst Dynamics Laboratory, Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of National Resources, Guilin 541004, China

2. 

School of Water Resources and Environment, China University of Geosciences(Beijing), Beijing 100083, China

Corresponding author: ZOU Sheng-zhang, zshzh@karst.ac.cn

Received Date: 2017-11-04
Revised Date: 2018-03-26
Accepted Date: 2018-09-10

摘要:样品测试是研究岩溶区水工环问题的重要手段。岩溶区交通不便利、样品运输困难以及测试单位处理样品不及时,导致样品测试存在不同程度的滞后,现有研究还不能有效解释"测试滞后"对岩溶水样性质有何影响。为此,本文以云南宣威市一典型岩溶泉水为研究对象,通过离子色谱仪、原子发射光谱仪等测试手段,对同一时间点采集的泉水样品按照时间序列对K+、Na+、Ca2+、Mg2+、Cl-、SO42-、HCO3-、pH、NO3-、CO2(fs)共10项指标进行对比实验,探讨"测试滞后"对岩溶水样性质的影响。结果表明:岩溶水样放置过程中,各指标A类标准不确定度为0.02~1.83,HCO3-、Ca2+不确定度值显著高于其他指标;Shapiro-Wilk正态性检验结果显示pH、K+、Mg2+、Cl-、NO3-服从正态分布;随着时间变化,各指标相对偏差变化范围0%~57.38%,其中pH、Ca2+、SO42-、NO3-的相对偏差在允许误差范围之内;10项指标均值含量与变异系数总体呈显著负相关性(Spearman相关系数为-0.709,P < 0.05),变异系数为Na+>K+>CO2(fs)>Mg2+>Cl->SO42->Ca2+>HCO3->pH>NO3-,揭示测试滞后对不同指标的影响程度不同,其中对质量分数低的指标影响尤为突出。在整个实验期间内,水样水质变化可分为5个阶段:以各项指标未出现明显变化的初期稳定阶段(0~3d),以Na+、K+、Mg2+三项指标出现显著变化的初步变化阶段(3~5d),以多项指标发生较为显著变化的混合变化阶段(5~17d),以微生物作用为主的细菌潜在影响阶段(17~35d),以水质趋于稳定的相对平衡阶段(35~75d),其中"细菌作用"和"碳酸平衡作用"是岩溶水样放置过程中存在的两个重要作用机制。研究结果可为提高岩溶水样测试质量提供科学指导。

关键词: 岩溶水, 样品测试, 测试滞后, 水质, 影响

要点

(1) 探讨了测试滞后对岩溶区地下水样品中10项指标的影响特性。

(2) 测试滞后对水样中质量分数低的指标影响尤为突出。

(3) 细菌作用和碳酸平衡作用是岩溶水样放置变化过程中存在的两个重要作用机制。

The Effect of Testing Lag on Chemical Indexes of Karst Water

ABSTRACT

BACKGROUND:

Sample testing is important for studying hydrogeology, engineering geology and environmental geology in Karst areas. The inconvenience of transportation, the difficulty of sample shipping and the delayed sample analyses by testing laboratory in Karst areas lead to the lag of sample testing in varying degrees. However, existing research cannot effectively explain the impact of test lag on the properties of Karst water samples.

OBJECTIVES:

To make progress on this scientific problem, a typical Karst spring in Xuanwei City, Yunnan Province was selected as research object.

METHODS:

Ten indicators of K+, Na+, Ca2+, Mg2+, Cl-, SO42-, HCO3-, pH, NO3- and CO2(fs) of spring water samples were determined by Ion Chromatography and Atomic Emission Spectrometry. These samples were collected at the same time and the same place according to the time series of 1d, 3d, 5d, 7d, 9d, 11d, 13d, 15d, 17d, 35d, 50d, 75d. The effect of test lag on the properties of Karst water samples was discussed.

RESULTS:

The results show that test lag had certain influence on analytical results. During 75 days Karst water sample placement, the uncertainty values of type A standard of the indicators were 0.02-1.83, and uncertainty values of HCO3- and Ca2+ were significantly higher than other indicators. Shapiro-Wilk normality test results showed that the pH, K+, Mg2+, Cl-, and NO3- follow normal distribution. As time elapsed, the relative deviation ranged from 0% to 57.38%. The relative deviation of pH, Ca2+, SO42- and NO3- was within the allowable error range. Overall, the mean content and coefficient of variation of ten indicators showed significant negative correlation (Spearman correlation coefficient is -0.709, P < 0.05), and the variation coefficient decreased as follows:Na+, K+, CO2(fs), Mg2+, Cl-, SO42-, Ca2+, HCO3-, pH, NO3-. These results revealed that the influence of test lag on different indicators was different, especially on the indicators with low mass fraction. The analysis of indicators changing over time showed that the change process of water quality of the water sample could be divided into five stages:stationary stage (0-3 day), preliminary change stage (3-5 day), mixed change stage (5-17 day), potential impact stage of bacteria (17-35 day) and relative equilibrium stage (35-75 day). Among them, bacterial action and carbonic acid balance were the two most important mechanisms during Karst water sample placement.

CONCLUSIONS:

The research results can provide technical support for improving the testing precision of water samples in Karst regions.

KEY WORDS: Karst water, sample testing, testing lag, water quality, influence

HIGHLIGHTS

(1) The influence of test lag on 10 indicators in groundwater samples from Karst area was discussed.

(2) Test lag had more significant effect on indictors with low mass fraction than others.

(3) Bacterial action and carbonic acid balance were the two important mechanisms under the process of Karst water sample placement.

本文参考文献

[1]

周长松, 邹胜章, 李录娟, 等. 岩溶区典型石灰土Cd形态指示意义及风险评价:以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562.

Zhou C S, Zou S Z, Li L J, et al. Implications of cadmium forms and risk assessment of calcareous soil in Karst area:A case study in Maocun in Guilin, China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2): 552-562.

[2]

Xia R Y. Groundwater resources in Karst area in Southern China and sustainable utilization pattern[J]. Journal of Groundwater Science and Engineering, 2016, 4(4): 301-309.

[3]

袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水化学特征及影响因素的多元统计分析[J]. 中国地质, 2016, 43(4): 1446-1456.

Yuan J F, Deng G S, Xu F, et al. The multivariate statistical analysis of chemical characteristics and influencing factors of Karst groundwater in the northern part of Bijie City, Guizhou Province[J]. Geology in China, 2016, 43(4): 1446-1456.

[4]

Gu X, Ma T, Wu Y, et al. Underwater mass spectrometers for in situ chemical analysis of the hydrosphere[J]. Procedia Earth and Planetary Science, 2017, (17): 245-248.

[5]

孙兴丽, 刘晓煌, 鲁继元, 等. 现代战争特点及军事地质调查[J]. 地质论评, 2017, 63(1): 99-112.

Sun X L, Liu X H, Lu J Y, et al. The characteristics of modern war and the investigation in military geology[J]. Geological Review, 2017, 63(1): 99-112.

[6]

孙继朝, 刘景涛, 齐继祥, 等. 我国地下水污染调查建立全流程现代化调查取样分析技术体系[J]. 地球学报, 2015, 36(6): 701-707.

Sun J C, Liu J T, Qi J X, et al. Modern investigation, sampling and analysis technological system in the investigation of groundwater pollution in China[J]. Acta Geoscientica Sinica, 2015, 36(6): 701-707.

[7]

夏日元, 邹胜章, 唐建生, 等. 南方岩溶地区1:5万水文地质环境地质调查技术要点分析[J]. 中国岩溶, 2017, 36(5): 599-608.

Xia R Y, Zou S Z, Tang J S, et al. Technical key points of 1:50000 hydrogeological and environmental geology surveys in Karst areas of South China[J]. Carsologica Sinica, 2017, 36(5): 599-608.

[8]

夏日元, 蒋忠诚, 邹胜章, 等. 岩溶地区水文地质环境地质综合调查工程进展[J]. 中国地质调查, 2017, 4(1): 1-10.

Xia R Y, Jiang Z C, Zou S Z, et al. Progress of hydrogeology and environmental geology comprehensive survey in Karst area[J]. Geological Survey of China, 2017, 4(1): 1-10.

[9]

翟磊, 詹秀春, 樊兴涛, 等. 应用S930树脂富集薄样-X射线荧光光谱现场分析环境水体中8种重金属的方法研究[J]. 岩矿测试, 2015, 34(1): 118-128.

Zhai L, Zhan X C, Fan X T, et al. Portable EDXRF analysis of eight heavy metals in environmental water using pre-concentration with purolite S930 and thin-layer sample technique[J]. Rock and Mineral Analysis, 2015, 34(1): 118-128.

[10]

Tian X K, Peng H, Li Y, et al. Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater[J].Sensors and Actuators B:Chemical, 2017, 243: 1002-1009. doi: 10.1016/j.snb.2016.12.079

[11]

李敬杰, 蔡五田, 耿婷婷, 等. 野外测量条件对石油污染地下水常规水化学参数的影响[J]. 环境工程, 2015, 33(4): 70-74.

Li J J, Cai W T, Geng T T, et al. The effects of field measuring conditions on petroleum contamination groundwater conventional water chemistry parameters[J]. Environmental Engineering, 2015, 33(4): 70-74.

[12]

赵悦, 秦晓鹏, 刘菲, 等. 水体中主要阴离子及pH值对双氯芬酸液相色谱定量的影响[J]. 岩矿测试, 2018, 37(1): 79-86.

Zhao Y, Qin X P, Liu F, et al. Effects of anions and pH on the determination of diclofenac in water solutions by high performance liquid chromatography[J]. Rock and Mineral Analysis, 2018, 37(1): 79-86.

[13]

周长松, 邹胜章, 朱丹尼, 等. 岩溶地下水样品Ca2+、HCO3-野外测试值与实验室测试值对比研究[J]. 中国岩溶, 2017, 36(5): 684-690.

Zhou C S, Zou S Z, Zhu D N, et al. Contrast study of Ca2+ and HCO3- between field test values and laboratory test values in Karst water[J]. Carsologica Sinica, 2017, 36(5): 684-690.

[14]

蓝高勇, 吴夏, 杨会, 等. 激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究[J]. 岩矿测试, 2017, 36(5): 460-467.

Lan G Y, Wu X, Yang H, et al. Inter-laboratory comparison of analysis for hydrogen and oxygen stable isotope rations in water samples by laser absorption spectroscopy[J]. Rock and Mineral Analysis, 2017, 36(5): 460-467.

[15]

杨会, 王华, 吴夏, 等. 样品采集和保存方法对水中溶解无机碳同位素分馏的影响[J]. 中国岩溶, 2015, 34(6): 642-647.

Yang H, Wang H, Wu X, et al. The influence of different pretreatment methods on the δ13C value of dissolved inorganic carbon in water[J]. Carsologica Sinica, 2015, 34(6): 642-647.

[16]

Taipale S J, Sonninen E. The influence of preservation method and time on the δ13C value of dissolved inorganic carbon in water samples[J].Rapid Communications in Mass Spectrometry, 2009, 23(16): 2507-2510. doi: 10.1002/rcm.v23:16

[17]

武福平, 夏传, 王艳琴, 等. 西北典型村镇集雨窖水水质变化及特性[J]. 环境工程学报, 2014, 8(9): 3541-3545.

Wu F P, Xia C, Wang Y Q, et al. Quality and its variation of water in rainwater collection cellar of rural areas of Northwest China[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3541-3545.

[18]

李小牛, 周长松, 杜斌, 等. 北方污灌区土壤重金属污染特征分析[J]. 西北农林科技大学学报(自然科学版), 2014, 42(6): 205-212.

Li X N, Zhou C S, Du B, et al. Pollution characteristics of heavy metals in sewage irrigated soil of Northern China[J]. Journal of Northwest Agriculture & Forestry University (Natural Science Edition), 2014, 42(6): 205-212.

[19]

辛文彩, 夏宁, 徐磊, 等. 长江三角洲沉积物标准物质研制[J]. 岩矿测试, 2017, 36(4): 388-395.

Xin W C, Xia N, Xu L, et al. Preparation of Yangtze river delta sediment reference materials[J]. Rock and Mineral Analysis, 2017, 36(4): 388-395.

[20]

曹宇春, 刘富玲. 基于综合变异系数的地基承载力可靠性分析[J]. 岩土力学, 2014, 35(7): 326-334.

Cao Y C, Liu F L. Reliability analysis of foundation bearing capacity based on combined coefficients of variation[J]. Rock and Soil Mechanics, 2014, 35(7): 326-334.

[21]

裘晓莹. 生活饮用水细菌总数培养时间探讨[J]. 铁道医学, 1997, 25(5): 304-305.

Qiu X Y. Total number of bacteria culture time for domestic and drinking water[J]. Railway Medical, 1997, 25(5): 304-305.

[22]

赵良杰, 夏日元, 易连兴, 等. 岩溶地下河浊度来源及对示踪试验影响的定量分析[J]. 地球学报, 2016, 37(2): 241-246.

Zhao L J, Xia R Y, Yi L X, et al. Quantitative analysis of the source and the effect of turbidity in Karst river on trace test[J]. Acta Geoscientica Sinica, 2016, 37(2): 241-246.

[23]

段逸凡, 贺秋芳, 刘子琦, 等. 岩溶区地下水微生物污染特征及来源:以重庆南山老龙洞流域为例[J]. 中国岩溶, 2014, 33(4): 504-511.

Duan Y F, He Q F, Liu Z Q, et al. Characteristics and source of microbial contamination of groundwater in Laolongdong Basin[J]. Carsologica Sinica, 2014, 33(4): 504-511.

[24]

邹胜章, 朱丹尼, 李录娟, 等. 溶井微污染水供水就地处理技术研究[J]. 中国岩溶, 2015, 34(4): 309-313.

Zou S Z, Zhu D N, Li L J, et al. In situ treatment of micro-polluted water supply in natural wells of Karst area[J]. Carsologica Sinica, 2015, 34(4): 309-313.

[25]

周艳彦, 李伟英, 张骏鹏, 等. 给水管网细菌再生长限制性营养元素研究[J]. 给水排水, 2016, 42(9): 119-124. doi: 10.3969/j.issn.1002-8471.2016.09.026

Zhou Y Y, Li W Y, Zhang J P, et al. Water supply pipe network bacteria regrowth limiting nutrient element research[J].Water Supply and Drainage, 2016, 42(9): 119-124. doi: 10.3969/j.issn.1002-8471.2016.09.026

[26]

郑金秀, 胡菊香, 池仕运, 等. 大宁河与香溪河细菌群落分布[J]. 环境科学与技术, 2016, 39(8): 171-177.

Zheng J X, Hu J X, Chi S Y, et al. Distribution of bacterial communities in Daning River and Xiangxi River[J]. Environmental Science & Technology, 2016, 39(8): 171-177.

[27]

Lehtinen T, Efimova E, Tremblay P L, et al. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process[J].Bioresource Technology, 2017, 243: 30-36. doi: 10.1016/j.biortech.2017.06.073

[28]

钱会, 张益谦. 开放系统中CaCO3的溶解与沉淀对水溶液的成分及其性质的影响[J]. 中国岩溶, 1995, 14(4): 352-361.

Qian H, Zhang Y Q. The effects of dissolution and precipitation of CaCO3 on the compositions and properties of water in an open system[J]. Carsologica Sinica, 1995, 14(4): 352-361.

[29]

闫志为, 刘辉利, 陶宗涛, 等. 温度对水中碳酸平衡的影响浅析[J]. 中国岩溶, 2011, 30(2): 128-131. doi: 10.3969/j.issn.1001-4810.2011.02.002

Yan Z W, Liu H L, Tao Z T, et al. Temperature effect on carbonic acid balance in water[J].Carsologica Sinica, 2011, 30(2): 128-131. doi: 10.3969/j.issn.1001-4810.2011.02.002

[30]

Kushner D J.Life in High Salt and Solute Concentra-tions: Halophilic Bacteria[M]//Microbial Life in Extreme Environments.London: Academic Press, 1978: 317-368.

[31]

Seck E H, Diop A, Armstrong N, et al. Microbial culturo-mics to isolate halophilic bacteria from table salt:Genome sequence and description of the moderately halophilic bacterium bacillus salis sp.nov.[J].New Microbes and New Infections, 2018, 23: 28-38. doi: 10.1016/j.nmni.2017.12.006

[32]

龙腾锐, 谢朝新, 方振东, 等. 长期贮存水中细菌的行为分析[J]. 重庆建筑大学学报, 2004, 26(3): 55-58.

Long T R, Xie C X, Fang Z D, et al. Behavior analysis of the bacteria in long-term storage water[J]. Journal of Chongqing Jianzhu University, 2004, 26(3): 55-58.

[33]

Yang H C, Sheng R, Zhang Z X, et al. Responses of nitrifying and denitrifying bacteria to flooding-drying cycles in flooded rice soil[J].Applied Soil Ecology, 2016, 103: 101-109. doi: 10.1016/j.apsoil.2016.03.008

[34]

李学礼. 水文地球化学(第二版)[M] . 北京: 原子能出版社, 1998: 20-21.

Li X L. Hydro-geochemistry (Second Edition)[M] . Beijing: Atomic Press, 1998: 20-21.
[35]

于正良, 杨平恒, 赵瑞一, 等. 春季生物作用对山地岩溶池水地球化学特征的影响[J]. 环境科学, 2015, 36(4): 1264-1269.

Yu Z L, Yang P H, Zhao R Y, et al. Influences of biological processes on geochemical characteristics:An example of a mountain Karst pool in spring season[J]. Environmental Science, 2015, 36(4): 1264-1269.

[36]

Chen M X, Chen Y W, Dong S Y, et al. Mixed nitrifying bacteria culture under different temperature dropping strategies:Nitrification performance, activity, and community[J].Chemosphere, 2018, 195: 800-809. doi: 10.1016/j.chemosphere.2017.12.129

相似文献(共20条)

[1]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[2]

徐崇福, 张霞, 房俊卓. 实验条件对X射线衍射物相定量分析结果的影响. 岩矿测试, 2008, 27(1): 60-62.

[3]

赵素利, 祁鹏, 孙红宾. 室内空气中甲醛和苯与温湿度及大气压关系的统计分析. 岩矿测试, 2008, 27(2): 158-160.

[4]

王春燕, 李瑞, 谷勤, 李雪梅, 廖立兵. 氯化铵-乙醇法测定蛭石的阳离子交换容量. 岩矿测试, 2008, 27(3): 204-206.

[5]

王震亮, 刘林玉, 柳益群. 鄂尔多斯盆地西峰地区长8砂岩微观非均质性的实验分析. 岩矿测试, 2008, 27(1): 29-32.

[6]

辛运菊, 梅祖明, 陈志清. 甲醛标准储备液浓度的不确定度评定. 岩矿测试, 2008, 27(1): 45-48.

[7]

宋雪英, 金彩霞, 胡晓钧, 李玉双, 李卉颖, 杨继松. 太子河流域水质模糊综合评价. 岩矿测试, 2011, 30(6): 705-708.

[8]

李海萍, 赵秋香, 何光涛, 莫书伟, 曾宇斌. 地表水和地下水水质分析前处理问题探讨. 岩矿测试, 2010, 29(5): 613-616.

[9]

刘孟刚, 苏菁. 全谱直读等离子体发射光谱法测定高纯金中的杂质元素. 岩矿测试, 2004, (4): 300-302307.

[10]

周兴志, 刘晓端, 陈明, 张玲金, 张前进. 风成沙系统去除官厅水库水中化学需氧量的效果. 岩矿测试, 2002, (3): 195-198.

[11]

刘晓雯. 地下水污染调查中水样无机组分检测质量控制体系 的建立和应用. 岩矿测试, 2010, 29(5): 580-584.

[12]

刘东生, 李玉梅. 升温处理对植物碳同位素测试结果的影响. 岩矿测试, 2005, (1): 23-25.

[13]

裴建国, 章程, 张强, 朱琴. 典型岩溶水系统碳汇通量估算. 岩矿测试, 2012, 31(5): 884-888.

[14]

陈正明, 周家贵, 刘松林. 气相色谱法测定岩溶水中氰化物. 岩矿测试, 1983, (4): 295-297.

[15]

徐蓉桢, 刘菲, 荆继红, 安子怡, 邹胜章. 典型浅层孔隙水和岩溶水中多环芳烃分布特征. 岩矿测试, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004

[16]

李强, 黄雅丹, 何若雪, 于奭, 宋昂, 曹建华. 岩溶水体惰性有机碳含量及其存在机理. 岩矿测试, 2018, 37(5): 475-478. doi: 10.15898/j.cnki.11-2131/td.201807250088

[17]

刘纯瑶, 苟龙飞, 邓丽, 金章东. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响. 岩矿测试, 2019, 38(1): 35-44. doi: 10.15898/j.cnki.11-2131/td.201806060070

[18]

蒋溶. 《岩矿测试》创刊. 岩矿测试, 1982, (1): 文前II-文前II.

[19]

陈立军, 汪涛. 1:20万区域化探样品的分析测试质量监控. 岩矿测试, 2004, (2): 143-147.

[20]

杨锦发. 地球化学调查样品测试异常值抽查方法的优化. 岩矿测试, 2004, (3): 212-215.

计量
  • PDF下载量(9)
  • 文章访问量(119)
  • HTML全文浏览量(28)
  • 被引次数(0)
目录

Figures And Tables

测试滞后对岩溶水样性质的影响研究

周长松, 邹胜章, 谢浩, 朱丹尼, 陈宏峰, 俞建国