【引用本文】 刘玉龙, 黄燕高, 刘菲, . 气相色谱法测试土壤中分段石油烃的标准化定量方法初探[J]. 岩矿测试, 2019, 38(1): 102-111. doi: 10.15898/j.cnki.11-2131/td.201709040139
LIU Yu-long, HUANG Yan-gao, LIU Fei. Analysis of Total Petroleum Hydrocarbon Fractions in Soils by Gas Chromatography: Standardized Calibration and Quantitation Method[J]. Rock and Mineral Analysis, 2019, 38(1): 102-111. doi: 10.15898/j.cnki.11-2131/td.201709040139

气相色谱法测试土壤中分段石油烃的标准化定量方法初探

1. 

石油石化污染物控制与处理国家重点实验室, 北京 102206

2. 

中国石油集团安全环保技术研究院有限公司, 北京 102206

3. 

中国地质大学(北京)北京市水资源与环境工程重点实验室, 北京 100083

4. 

湖北省地质局第八地质大队, 湖北 襄阳 441000

收稿日期: 2017-09-04  修回日期: 2018-07-22  接受日期: 2018-11-02

基金项目: 中国地质调查局地质调查项目(DD20160312)

作者简介: 刘玉龙, 高级工程师, 主要从事有机污染物测试技术与地下水污染防控技术研究。E-mail:liuyulong98@sohu.com

Analysis of Total Petroleum Hydrocarbon Fractions in Soils by Gas Chromatography: Standardized Calibration and Quantitation Method

1. 

State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China

2. 

Research Institute of Safety and Environment Technology, China National Petroleum Corporation, Beijing 102206, China

3. 

Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences(Beijing), Beijing 100083, China

4. 

The Eighth Geological Brigade of Hubei Geological Bureau, Xiangyang 441000, China

Received Date: 2017-09-04
Revised Date: 2018-07-22
Accepted Date: 2018-11-02

摘要:目前土壤样品中分段石油烃的分析方法中石油烃包括的碳原子数范围和采用的校准物质不统一,造成不同实验室的量值不具有可比性。为保证不同实验室之间结果的可比性,本文尝试建立一种石油烃相邻碳原子数标准化定量方法。该方法主要包括:①规定了石油烃包括的碳原子数范围为气相色谱峰中正己烷和正四十碳烷之间所有的烃(含正己烷);②总石油烃(TPH)分为挥发性石油烃(VPH)和半挥发性石油烃(SPH),分别选取碳原子数为6~10的5个正构烷烃作为VPH校准物质,选取碳原子数为10~40的31个正构烷烃作为SPH校准物质。采用平均响应因子法或一次线性回归法,建立校准物质的峰面积-浓度的校准关系;③采用相邻峰标准化校准方法,逐一定量所有的目标色谱峰;④计算正构烷烃含量、总石油烃含量和任意分段的石油烃含量。该方法为环境样品中石油烃分析方法的标准化建设提供了数据基础。

关键词: 石油烃, 分段, 气相色谱法, 标准化方法

要点

(1) TPH范围规定为气相色谱峰中C6~C40之间所有的烃。

(2) 校准物质为C6~C40共35个正构烷烃。

(3) 建立了相邻峰标准化校准方法。

(4) 保证了TPH和任意分段石油烃的结果准确可比。

Analysis of Total Petroleum Hydrocarbon Fractions in Soils by Gas Chromatography: Standardized Calibration and Quantitation Method

ABSTRACT

BACKGROUND:

Inter-laboratory measurement results of total petroleum hydrocarbons (TPH) in soils determined by current Gas Chromatography-Flame Ionization Detector, are not comparable due to specified TPH ranges of alkanes and/or different calibration standards between laboratories.

OBJECTIVES:

To establish a standardized calibration and quantitation method of TPH and to develop the adjacent-peak calibration and quantitation method (APCQM).

METHODS:

The APCQM mainly includes:(1) defining TPH range as all compounds eluting between n-hexane and n-tetracontane; (2) division of TPHs into volatile petroleum hydrocarbons (VPH) and semivolatile petroleum hydrocarbons (SPH). Specify and calibrate procedure of TPH. Reference materials (RM) for VPH are 5 n-alkanes, from n-hexane to n-decane, whereas SPH RMs are 31 n-alkanes, from n-decane to n-tetracontane. Calibration equations of peak area and concentration of n-alkanes can be constructed by average response factor or linear regression methods; (3) quantitative concentrations of all target chromatographic peaks acquired by adjacent standard peak calibration; (4) calculation of the contents of n-alkanes, TPH and optional TPH fractions.

RESULTS:

Using the normal calibration and quantitation method, TPH recoveries of laboratory fortified blanks and laboratory fortified sample matrices could be underestimated or overestimated by 10%. By using the APCQM the paradox in quality control processes was resolved, and thus reliable measurement results of TPH were obtained in laboratories.

CONCLUSIONS:

The APCQM is applicable to standardization analysis of TPH fractions in environmental samples.

KEY WORDS: total petroleum hydrocarbon, fraction, Gas Chromatography, standardization

HIGHLIGHTS

(1) Defined TPH range as all compounds eluting between n-hexane and n-tetracontane.

(2) TPH reference materials contained 35 n-alkanes from n-hexane to n-tetracontane.

(3) The adjacent-peak calibration and quantitation method (APCQM) was established.

(4) Ensured the accuracy and comparability of measurement results of TPH and optional TPH fractions.

本文参考文献

[1]

张利飞, 刘昉, 任玥, 等. 环保领域石油烃类标准体系存在的问题及建议[J]. 化学试剂, 2017, 39(12): 1-10.

Zhang L F, Liu F, Ren Y, et al. Current status and suggestions on environmental standards of petroleum hydrocarbons[J]. Chemical Reagents, 2017, 39(12): 1-10.

[2]

Guarino C, Spada V, Sciarrillo R, et al. Assessment of three approaches of bioremediation (natural attenuation, landfarming and bioagumentation-assistited landfarming) for a petroleum hydrocarbons contaminated soil[J].Chemosphere, 2017, 170: 10-16. doi: 10.1016/j.chemosphere.2016.11.165

[3]

杨慧娟, 刘五星, 骆永明, 等. 气相色谱-质谱法分段测定土壤中的可提取总石油烃[J]. 土壤, 2014, 46(1): 134-138.

Yang H J, Liu W X, Luo Y M, et al. The sectional determination of extractable total petroleum hydrocarbons in soil by gas chromatography-mass spectrometry[J]. Soils, 2014, 46(1): 134-138.

[4]

曹云者, 李发生. 基于风险的石油烃污染土壤环境管理与标准值确立方法[J]. 农业环境科学学报, 2010, 29(7): 1225-1231.

Cao Y Z, Li F S. Risk-based environmental management of petroleum hydrocarbons contaminated soil and development of standards:A review[J]. Journal of Agro-Environment Science, 2010, 29(7): 1225-1231.

[5]

李桂香, 高岩, 张青, 等. 环境样品中石油烃的分类/分段检测技术[J]. 实验室研究与探索, 2016, 35(4): 30-33. doi: 10.3969/j.issn.1006-7167.2016.04.008

Li G X, Gao Y, Zhang Q, et al. Testing technology of total petroleum hydrocarbon speciation/fractions in the environmental samples[J].Research and Exploration in Laboratory, 2016, 35(4): 30-33. doi: 10.3969/j.issn.1006-7167.2016.04.008

[6]

张欢燕, 王臻, 周守毅, 等. 环境中总石油烃的气相色谱分析测定[J]. 环境监控与预警, 2013, 5(2): 24-27. doi: 10.3969/j.issn.1674-6732.2013.02.006

Zhang H Y, Wang Z, Zhou S Y, et al. TPH Determination in environmental matrix by GC-FID[J].Environmental Monitoring and Forewarning, 2013, 5(2): 24-27. doi: 10.3969/j.issn.1674-6732.2013.02.006

[7]

Coulon F, Wu G.Determination of Petroleum Hydrocar-bon Compounds from Soils and Sediments Using Ultrasonic Extraction[M]//McGenity T, Timmis K, Nogales B (eds).Hydrocarbon and Lipid Microbiology Protocols.Heidelberg: Springer, 2014: 31-46.

[8]

Brown D M, Okoro S, van Gils J, et al. Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils[J].Science of the Total Environment, 2017, 596-597: 284-292. doi: 10.1016/j.scitotenv.2017.04.072

[9]

Kwon M J, Hwang Y. Assessing the potential of organic solvents on total petroleum hydrocarbon extraction from diesel-contaminated soils[J].Water Air and Soil Pollution, 2017, 228: 189. doi: 10.1007/s11270-017-3368-7

[10]

Faustorilla M V, Chen Z L, Dharmarajan R, et al. Deter-mination of total petroleum hydrocarbons in Australian groundwater through the improvised gas chromatography-flame ionization detection technique[J].Journal of Chromatographic Science, 2017, 55(8): 775-783. doi: 10.1093/chromsci/bmx038

[11]

李胜勇, 李先国, 邓伟, 等. 超声萃取气相色谱法检测海洋沉积物中的总石油烃[J]. 海洋湖沼通报, 2013, 35(2): 93-98.

Li S Y, Li X G, Deng W, et al. Determination of total petroleum hydrocarbons in marine sediments using gas chromatography with FID detector after ultrasonic extraction[J]. Transactions of Oceanology and Limnology, 2013, 35(2): 93-98.

[12]

周艳红, 李凌波. 废水中萃取性石油烃的测定[J]. 石油炼制与化工, 2012, 43(5): 88-92. doi: 10.3969/j.issn.1005-2399.2012.05.020

Zhou Y H, Li L B. Determination of extractable petroleum hydrocarbons in wastewater[J].Petroleum Processing and Petrochemicals, 2012, 43(5): 88-92. doi: 10.3969/j.issn.1005-2399.2012.05.020

[13]

张劲强, 顾骏. 利用Agilent Intuvo 9000进行水和土壤样品中柴油类总石油烃含量的快速分段检测方法[J]. 环境化学, 2017, 36(8): 1877-1879.

Zhang J Q, Gu J. Fast analysis of total petroleum hydrocarbon fractions as diesel range organics in water and soil samples using Agilent Intuvo 9000 gas chromatography[J]. Environmental Chemistry, 2017, 36(8): 1877-1879.

[14]

钟灿红, 孙丹, 张慧, 等. 水中萃取性石油烃的气相色谱分析方法[J]. 浙江化工, 2017, 48(6): 51-54. doi: 10.3969/j.issn.1006-4184.2017.06.016

Zhong C H, Sun D, Zhang H, et al. EPH determination in water matrix by GC[J].Zhejiang Chemical Industry, 2017, 48(6): 51-54. doi: 10.3969/j.issn.1006-4184.2017.06.016

[15]

Sui H, Hua Z T, Li X G, et al. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils[J].Environmental Science Pollution Research, 2014, 21: 5774-5784. doi: 10.1007/s11356-014-2511-x

[16]

陈帅, 赵洋甬, 高飞, 等. 土壤中总石油烃预处理方法研究[J]. 环境科学与管理, 2017, 42(7): 85-90. doi: 10.3969/j.issn.1673-1212.2017.07.021

Chen S, Zhao Y Y, Gao F, et al. Research on testing method of total petroleum hydrocarbons in soil[J].Environmental Science and Management, 2017, 42(7): 85-90. doi: 10.3969/j.issn.1673-1212.2017.07.021

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

饶竹, 何淼. 圆盘固相萃取富集-气相色谱法测定地表水中有机氯和有机磷农药. 岩矿测试, 2008, 27(1): 12-16.

[3]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[4]

孙青, 李松. 高压气相色谱法快速测定痕量长链烯酮. 岩矿测试, 2008, 27(1): 5-8.

[5]

邓天龙, 王爽. 水环境中苯系污染物的分析研究进展. 岩矿测试, 2008, 27(2): 141-145.

[6]

张彩明, 许锦, 蒋启贵, 张渠. 在线富集-气相色谱法分析天然气中痕量轻烃. 岩矿测试, 2013, 32(2): 319-324.

[7]

王瑞, 李季, 蒋启贵, 张彩明. 气相色谱法定量测定烃源岩中轻烃的含量. 岩矿测试, 2008, 27(5): 333-336.

[8]

陈卫明, 肖细炼, 李庆霞, 薄玮, 张勤. 气相色谱法测定油气化探样品中酸解烃的研究. 岩矿测试, 2015, 34(6): 698-703. doi: 10.15898/j.cnki.11-2131/td.2015.06.015

[9]

佟 玲, 吴淑琪, 杨佳佳, 张玲金. 土壤中25种有机氯农药和多氯联苯的气相色谱分析方法研究. 岩矿测试, 2010, 29(3): 277-281.

[10]

方国桢, 方梅. 气相色谱和薄层色谱法在形态分析中的应用. 岩矿测试, 1996, (4): 299-310.

[11]

王磊, 刘庆学, 安彩秀, 高希娟, 刘金巍, 李娜. 柱前衍生-气相色谱法同时测定水中醛酮类和硝基苯类化合物. 岩矿测试, 2010, 29(5): 486-490.

[12]

郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留. 岩矿测试, 2014, 33(3): 406-412.

[13]

刘永刚, 刘菲, 郑海涛. 固相萃取-气相色谱法测定水中多环芳烃. 岩矿测试, 2004, (2): 148-152.

[14]

高松, 张兰英, 王琳, 宋杰, 崔哲, 吕春欣, 刘鹏, 邓银舟. Needle trap-顶空进样-气相色谱法分析地下水中的苯系物. 岩矿测试, 2010, 29(5): 508-512.

[15]

肖刚. 加速溶剂提取-气相色谱法同时测定土壤中的22种有机氯和有机磷农药. 岩矿测试, 2012, 31(6): 1033-1036.

[16]

梁汉东, 冉凡林, 张宏刚, 张月琴. 气相色谱法测定煤层瓦斯中低浓度氢气和氦气. 岩矿测试, 2005, (4): 254-258.

[17]

房贤文, 谭培功, 单红, 董新春, 张婷婷. 气相色谱法测定地表水中醛酮类化合物. 岩矿测试, 2007, 26(5): 363-366.

[18]

冯朝军, 潘建明, 王红群, 皮业华. 微波消解-气相色谱法测定沉积物中的木质素. 岩矿测试, 2011, 30(1): 23-26.

[19]

左海英, 张莉, 邢晨曦, 李晓亚, 张永涛. 在线净化-气相色谱法测定土壤中有机磷农药. 岩矿测试, 2012, 31(4): 660-665.

[20]

刘金巍, 王磊, 安彩秀, 肖凡, 查晓康, 高希娟. 固相萃取-气相色谱法测定饮用水中的多氯联苯. 岩矿测试, 2011, 30(5): 611-616.

计量
  • PDF下载量(23)
  • 文章访问量(120)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

气相色谱法测试土壤中分段石油烃的标准化定量方法初探

刘玉龙, 黄燕高, 刘菲