【引用本文】 温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121-129. doi: 10.15898/j.cnki.11-2131/td.201708110129
WEN Li-gang, ZENG Pu-sheng, ZHAN Xiu-chun, et al. Application of the Automated Mineral Identification and Characterization System (AMICS) in the Identification of Rare Earth and Rare Minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121-129. doi: 10.15898/j.cnki.11-2131/td.201708110129

矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用

1. 

国家地质实验测试中心, 北京 100037

2. 

中国地质大学(北京)地球科学与资源学院, 北京 100083

收稿日期: 2017-08-11  修回日期: 2018-01-22  接受日期: 2018-03-21

基金项目: 中国地质科学院基本科研业务费资助项目(YYWF201619);国家自然科学基金资助项目(41072073);中国地质调查局地质调查工作项目(12120113002500);自然资源部公益性行业科研专项(201211078)

作者简介: 温利刚, 硕士研究生, 主要从事岩浆作用与资源环境研究。E-mail:yunwenligang@163.com

通讯作者: 曾普胜, 博士, 研究员, 长期从事矿床学、岩石学和地球化学研究。E-mail:zengpusheng@vip.sohu.com

Application of the Automated Mineral Identification and Characterization System (AMICS) in the Identification of Rare Earth and Rare Minerals

1. 

National Research Center for Geoanalysis, Beijing 100037, China

2. 

School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China

Corresponding author: ZENG Pu-sheng, zengpusheng@vip.sohu.com

Received Date: 2017-08-11
Revised Date: 2018-01-22
Accepted Date: 2018-03-21

摘要:云南武定迤纳厂铁-铜-稀土矿床是我国扬子地块西南缘具有代表性的元古代铁-铜-稀土矿床之一,矿床中除Fe、Cu外,还伴生REEs、Nb、Co、Mo、Au、U等元素。由于矿石矿物组成复杂,并且稀土、稀有矿物结晶粒度细小、嵌布特征复杂,使用传统的测试技术很难准确地识别鉴定,因此该矿床中稀土、稀有(铌)矿物的赋存状态研究一直较为薄弱。本文应用目前国际上矿物与地质行业先进的矿物自动分析系统——矿物表征自动定量分析系统(AMICS),结合扫描电镜-能谱仪(SEM-EDS)显微结构原位分析技术,实现了常规岩矿鉴定手段难以完成的矿物定量识别和鉴定,准确地测定了武定迤纳厂铁-铜-稀土矿床脉状矿石中矿物种类及其含量,在脉状矿石发现了含量可观的氟碳钙铈矿(0.82%)和少量的含铌金红石(0.02%)等稀土稀有矿物。研究表明,除了铁氧化物成矿阶段,在铜硫化物成矿阶段也伴随有稀土成矿作用,因此可将主矿化期划分为铁氧化物-稀土矿化阶段(Ⅱ-1)和铜硫化物(-金)-稀土矿化阶段(Ⅱ-2)。研究成果为矿石中稀土、稀有金属等战略矿产资源的综合利用及矿床的进一步研究提供了可靠的数据,同时建立了一套先进、实用的岩石矿物鉴定技术,可望在地质、勘探、资源的有效利用等领域得到更广泛应用。

关键词: AMICS, 氟碳钙铈矿, 铁-铜-稀土矿床, 迤纳厂, 滇中

要点

(1) 应用矿物表征自动定量分析系统(AMICS)测定脉状矿石的矿物组成、粒度和嵌布特征。

(2) 应用扫描电镜-能谱仪(SEM-EDS)分析目标矿物的微观形貌和物相组成。

(3) 在迤纳厂铁-铜-稀土矿床脉状矿石中发现含量可观的氟碳钙铈矿和少量含铌金红石等稀土、稀有(铌)矿物。

(4) 迤纳厂铁-铜-稀土矿床在铁氧化物成矿阶段(Ⅱ-1)和铜硫化物成矿阶段(Ⅱ-2)均伴随有稀土成矿作用。

Application of the Automated Mineral Identification and Characterization System (AMICS) in the Identification of Rare Earth and Rare Minerals

KEY WORDS: Automated Mineral Identification and Characterization System (AMICS), parasite, Fe-Cu-REE deposit, Yinachang, the central Yunnan Province

HIGHLIGHTS

(1) The mineral composition, size and distribution in vein ore were investigated by AMICS.

(2) The mineral microstructure and chemical composition were observed by SEM-EDS.

(3) A mounts of fine and micro-fine radial parasite aggregates, and minor Nb-bearing rutiles were recognized in the vein ores from the Yinachang Fe-Cu-REE deposit.

(4) Both of the iron oxides (Ⅱ-1) and copper sulfides (Ⅱ-2) mineralization stages are associated with REEs mineralization in the Yinachang Fe-Cu-REE deposit.

本文参考文献

[1]

杨时蕙. 从磁铁矿内部结构探讨云南迤纳厂铁矿床的成因[J]. 中国地质科学院成都地质矿产研究所所刊, 1982, 3(1): 137-147.

Yang S H. An approach to the genesis of magnetite deposit, Yinachang, Yunnan, from the internal structures of magnetite[J]. Bulletin of the Chengdu Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1982, 3(1): 137-147.

[2]

杨耀民, 涂光炽, 胡瑞忠, 等. 迤纳厂稀土铁铜矿床稀土元素地球化学[J]. 矿物学报, 2004, 24(3): 301-308.

Yang Y M, Tu G Z, Hu R Z, et al. REE geochemistry of Yinachang Fe-Cu-REE deposit in Yunnan Province[J]. Acta Mineralogica Sinica, 2004, 24(3): 301-308.

[3]

杨耀民, 涂光炽, 胡瑞忠, 等. 武定迤纳厂Fe-Cu-REE矿床Sm-Nd同位素年代学及其地质意义[J]. 科学通报, 2005, 50(12): 1253-1258. doi: 10.3321/j.issn:0023-074X.2005.12.017

Yang Y M, Tu G Z, Hu R Z, et al. Sm-Nd isotopic geochronology of the Yinachang Fe-Cu-REE deposit at Wuding, Yunnan Province and its geologic significance[J].Chinese Science Bulletin, 2005, 50(12): 1253-1258. doi: 10.3321/j.issn:0023-074X.2005.12.017

[4]

Zhao X F, Zhou M F. Fe-Cu deposits in the Kangdian region, SW China:A Proterozoic IOCG (iron oxide-copper-gold) metallogenic province[J].Mineralium Deposita, 2011, 46(7): 731-747. doi: 10.1007/s00126-011-0342-y

[5]

Zhao X F, Zhou M F, Gao J F, et al. In situ Sr isotope analysis of apatite by LA-MC-ICP-MS:Constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China[J].Mineralium Deposita, 2015, 50(7): 871-884. doi: 10.1007/s00126-015-0578-z

[6]

叶霖, 刘玉平, 李朝阳, 等. 云南武定迤纳厂铜矿含矿石英脉40Ar-39Ar年龄及其意义[J]. 矿物学报, 2004, 24(4): 411-414.

Ye L, Liu Y P, Li C Y, et al. Ar-Ar isotopic age Yinachang copper deposit, Wuding, Yunnan Province, China and its implications[J].Acta Mineralogica Sinica, 2004, 24(4): 411-414.

[7]

侯林, 丁俊, 邓军, 等. 云南武定迤纳厂铁铜矿岩浆角砾岩LA-ICP-MS锆石U-Pb年龄及其意义[J]. 地质通报, 2013, 32(4): 580-588.

Hou L, Ding J, Deng J, et al. Zircon LA-ICP-MS dating of the magmatic breccia from the Yinachang iron-copper deposit in Wuding County of Yunnan Province and its geological significance[J]. Geological Bulletin of China, 2013, 32(4): 580-588.

[8]

叶现韬, 朱维光, 钟宏, 等. 云南武定迤纳厂Fe-Cu-REE矿床的锆石U-Pb和黄铜矿Re-Os年代学、稀土元素地球化学及其地质意义[J]. 岩石学报, 2013, 29(4): 1167-1186.

Ye X T, Zhu W G, Zhong H, et al. Zircon U-Pb and chalcopyrite Re-Os geochronology, REE geochemistry of the Yinachang Fe-Cu-REE deposit in Yunnan Province and its geological significance[J]. Acta Petrologica Sinica, 2013, 29(4): 1167-1186.

[9]

Hou L, Ding J, Deng J, et al. Geology, geochronology, and geochemistry of the Yinachang Fe-Cu-Au-REE deposit of the Kangdian region of SW China:Evidence for a Paleo-Mesoproterozoic tectono-magmatic event and associated IOCG systems in the Western Yangtze Block[J].Journal of Asian Earth Sciences, 2015, 103: 129-149. doi: 10.1016/j.jseaes.2014.09.016

[10]

丁俊, 侯林. 云南武定迤纳厂岩浆热液型铁-铜-金-稀土矿床流体特征研究[J]. 西北地质, 2012, 45(4): 39-50.

Ding J, Hou L. Study on ore-forming fluid characteristics of Yinachang Fe-Cu-Au-REE deposit, Wuding, Yunnan Province, China[J]. Northwestern Geology, 2012, 45(4): 39-50.

[11]

侯林, 丁俊, 王长明, 等. 云南武定迤纳厂铁-铜-金-稀土矿床成矿流体与成矿作用[J]. 岩石学报, 2013, 29(4): 1187-1202.

Hou L, Ding J, Wang C M, et al. Ore-forming fluid and metallogenesis of the Yinachang Fe-Cu-Au-REE deposit, Wuding, Yunan Province, China[J]. Acta Petrologica Sinica, 2013, 29(4): 1187-1202.

[12]

侯林, 彭惠娟, 丁俊, 等. 云南武定迤纳厂铁-铜-金-稀土矿床成矿物质来源——来自矿床地质与S、Pb、H、O同位素的制约[J]. 岩石矿物学杂志, 2015, 34(2): 205-218.

Hou L, Peng H J, Ding J, et al. Sources of the ore-forming materials for the Yinachang Fe-Cu-Au-REE deposit, Wuding, Yunnan Province:Constraints from the ore geology and the S, Pb, H, O isotope geochemistry[J]. Acta Petrologica et Mineralogica, 2015, 34(2): 205-218.

[13]

Li X C, Zhou M F. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China[J]. Geochimica et Cosmochimica Acta, 2015, 166(1): 53-73.

[14]

Creelman R A, Ward C R. A scanning electron micro-scope method for automated, quantitative analysis of mineral matter in coal[J].International Journal of Coal Geology, 1996, 30(3): 249-269. doi: 10.1016/0166-5162(95)00043-7

[15]

Liu Y H, Gupta R, Sharma A, et al. Mineral matter-organic matter association characterisation by QEMSCAN and applications in coal utilisation[J].Fuel, 2005, 84(10): 1259-1267. doi: 10.1016/j.fuel.2004.07.015

[16]

Pascoe R D, Power M R, Simpson B, et al. QEMSCAN analysis as a tool for improved understanding of gravity separator performance[J].Minerals Engineering, 2007, 20(5): 487-495. doi: 10.1016/j.mineng.2006.12.012

[17]

Gu Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI Mineral Liberation Analyser[J].Journal of Minerals and Materials Characterization and Engineering, 2003, 2(1): 33-41. doi: 10.4236/jmmce.2003.21003

[18]

Redwan M, Rammlmair D, Meima J A, et al. Application of mineral liberation analysis in studying micro-sedimentological structures within sulfide mine tailings and their effect on hardpan formation[J].Science of the Total Environment, 2012, 414: 480-493. doi: 10.1016/j.scitotenv.2011.10.038

[19]

梁冬云, 邹霓, 李波, 等. MLA自动检测技术在低品位钼矿石工艺矿物学研究中的应用[J]. 中国钼业, 2010, 34(1): 32-34.

Liang D Y, Zou N, Li B, et al. Application of MLA automated quantitative mineralogy in process mineralogy research on low-grade molybdenum ore[J]. China Molybdenum Industry, 2010, 34(1): 32-34.

[20]

李波, 梁冬云, 张莉莉, 等. 富磷灰石复杂稀土矿石工艺矿物学研究[J]. 中国稀土学报, 2012, 30(6): 761-765.

Li B, Liang D Y, Zhang L L, et al. Process mineralogy of an apatite-rich complex rare earth ore[J]. Journal of the Chinese Rare Earth Society, 2012, 30(6): 761-765.

[21]

苟瑞涛. 基于MLA的碳酸岩-碱性杂岩稀土-铌-铁矿矿物学特征研究——以内蒙古白云鄂博矿床为例[D]. 北京: 中国地质大学, 2016: 1-68.

Gou R T. The Study on Mineralogical Characteristics of REE-Nb-Fe Ore within Carbonatites-Alkaline Complexes Based on MLA-A Case Study for Bayan Obo Deposit in Inner Mongolia, China[D]. Beijing: China University of Geosciences, 2016: 1-68.

[22]

Zhou M F, Zhao X F, Chen W T, et al. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the Southwestern Yangtze Block, Southern China and Northern Vietnam[J].Earth-Science Reviews, 2014, 139: 59-82. doi: 10.1016/j.earscirev.2014.08.013

[23]

杨波, 丁俊, 徐金沙, 等. 滇中武定迤纳厂铁铜多金属矿床中稀土、金的赋存状态特征研究[J]. 矿物岩石, 2014, 34(4): 36-45.

Yang B, Ding J, Xu J S, et al. Research of occurrence character and REE of associated gold for the Yinachang Fe-Cu-Au-REE deposit in central Yunnan region[J]. Journal of Mineralogy and Petrology, 2014, 34(4): 36-45.

[24]

Zhao X F, Zhou M F, Li J W, et al. Sulfide Re-Os and Rb-Sr isotope dating of the Kangdian IOCG metallogenic Province, Southwest China:Implications for regional metallogenesis[J].Economic Geology, 2013, 108(6): 1489-1498. doi: 10.2113/econgeo.108.6.1489

[25]

Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8Ga orogens:Implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1-2): 125-162.

[26]

Zhao G C, Sun M, Wilde S A, et al. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent:Records in the North China Craton[J].Gondwana Research, 2003, 6(3): 417-434. doi: 10.1016/S1342-937X(05)70996-5

[27]

Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesopro-terozoic supercontinent:Assembly, growth and breakup[J].Earth Science Reviews, 2004, 67(1-2): 91-123. doi: 10.1016/j.earscirev.2004.02.003

[28]

李献华, 周汉文, 李正祥, 等. 扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征[J]. 地球化学, 2001, 30(4): 315-322.

Li X H, Zhou H W, Li Z X, et al. Zircon U-Pb age and petrochemical characteristics of the Neoproterozoic bimodal volcanics from Western Yangtze Block[J]. Geochimica, 2001, 30(4): 315-322.

[29]

李献华, 周汉文, 李正祥, 等. 川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义[J]. 地质科学, 2002, 37(3): 264-276.

Li X H, Zhou H W, Li Z X, et al. Petrogenesis of Neoproterozoic bimodal volcanics in Western Sichuan and its tectonic implications:Geochemical and Sm-Nd isotopic constraints[J]. Chinese Journal of Geology, 2002, 37(3): 264-276.

[30]

江新胜, 王剑, 崔晓庄, 等. 滇中新元古代澄江组锆石SHRIMP U-Pb年代学研究及其地质意义[J]. 中国科学(地球科学), 2012, 42(10): 1496-1507.

Jiang X S, Wang J, Cui X Z, et al. Zircon SHRIMP U-Pb geochronology of the Neoproterozoic Chengjiang Formation in Central Yunnan Province (SW China) and its geological significance[J]. Science China (Earth Sciences), 2012, 42(10): 1496-1507.

相似文献(共20条)

[1]

夏珍珠. 电感耦合等离子体发射光谱法测定载金炭中铜铁钙镁. 岩矿测试, 2012, 31(2): 263-267.

[2]

王梅英, 李鹏程, 李艳华, 李莹, 王留芳, 陈静. 蓝晶石矿中氟钠镁铝硅铁钛钾钙元素的X射线荧光光谱分析. 岩矿测试, 2013, 32(6): 909-914.

[3]

金明霞. “康滇地轴”北段花岗岩岩浆类型及其含矿性. 岩矿测试, 1983, (3): 174-178.

[4]

戴婕, 张林奎, 潘晓东, 石洪召, 陈敏华, 王鹏, 张斌辉, 张茜, 金斌, 任静. 滇东南南秧田白钨矿矿床矽卡岩矿物学特征及成因探讨. 岩矿测试, 2011, 30(3): 269-275.

[5]

杨载明. 二次熔矿方式电感耦合等离子体发射光谱法测定棕刚玉中硅铁钛钙镁锆. 岩矿测试, 2012, 31(4): 617-620.

[6]

陈达仁. 偶氮氯磷-mN-二苯胍-溴化十六烷基吡啶胶束增溶分光光度法测定岩矿中微量铈组稀土. 岩矿测试, 1984, (1): 63-65.

[7]

张立群. 铜铁试剂在极谱分析中的应用. 岩矿测试, 1985, (2): 169-173.

[8]

严清高, 李超, 江小均, 王忠强, 李云驹, 李伟. 滇中昆阳磷矿成矿时代及沉积环境Re-Os同位素示踪研究. 岩矿测试, 2018, 37(4): 462-474.

[9]

任建民, 王家风. 磷矿中稀土总量和铈组稀土含量的测定. 岩矿测试, 1989, (4): 293-296.

[10]

王淑英, 刘杰. 铜—混合稀土合金中11个非稀土杂质元素的光谱测定. 岩矿测试, 1988, (2): 145-147.

[11]

段凯波, 王登红, 熊先孝, 连卫, 高鹏, 王英林, 张杨. 贵州织金磷矿床中离子吸附型稀土的存在及初步定量. 岩矿测试, 2014, 33(1): 118-125.

[12]

叶年咏. 偶氮氯磷-mN直接光度法测定矿石中铈族稀土元素. 岩矿测试, 1983, (3): 222-223.

[13]

申云, 李春兰. 偶氮溴膦-pSN光度法测定矿石中的铈族稀土元素. 岩矿测试, 1988, (1): 6-9.

[14]

陈法荣. X—射线荧光光谱分析铜精矿中的铜和铁. 岩矿测试, 1989, (2): 145-146.

[15]

张承帅, 李莉, 张长青. 福建马坑矽卡岩型铁(钼)矿床稀土元素地球化学及地质意义. 岩矿测试, 2013, 32(1): 145-156.

[16]

辛平, 彭路生. 用氟硼酸根选择电极测定硼镁矿中硼. 岩矿测试, 1984, (2): 173-175.

[17]

孟亚东, 孙洛新, 傅晓强, 杨桂松, 申开洪. 氟盐取代-EDTA滴定法测定铝土矿中铝量. 岩矿测试, 2008, 27(6): 475-476.

[18]

苏耀东 李静 马红梅. 磷酸铈共沉淀原子吸收光谱法测定硫酸钴中的痕量铁. 岩矿测试, 2005, (1): 43-46.

[19]

夏瑜, 彭光菊, 周卫宁, 张新海, 马荣锴. 江西富家坞矿床铜钼矿石中铼元素的赋存状态及其回收影响因素分析. 岩矿测试, 2017, 36(6): 659-665. doi: 10.15898/j.cnki.11-2131/td.201703270039

[20]

彭礼贵. 甘肃省白银厂黄铁矿型铜矿床火山岩—石英角斑岩熔化实验的初步研究. 岩矿测试, 1983, (2): 99-100.

计量
  • PDF下载量(42)
  • 文章访问量(334)
  • HTML全文浏览量(117)
  • 被引次数(0)
目录

Figures And Tables

矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用

温利刚, 曾普胜, 詹秀春, 范晨子, 孙冬阳, 王广, 袁继海