【引用本文】 陈宇峰, 郑秀丽, 李晶, 等. 渤海沉积物中甲烷氧化速率及同位素分馏规律研究[J]. 岩矿测试, 2018, 37(2): 164-174. doi: 10.15898/j.cnki.11-2131/td.201707100117
CHEN Yu-feng, ZHENG Xiu-li, LI Jing, et al. Study on Oxidation Rate and Isotope Fractionation of Methane in Bohai Sea Sediments[J]. Rock and Mineral Analysis, 2018, 37(2): 164-174. doi: 10.15898/j.cnki.11-2131/td.201707100117

渤海沉积物中甲烷氧化速率及同位素分馏规律研究

1. 

青岛大学环境科学与工程系, 山东 青岛 266071

2. 

自然资源部天然气水合物重点实验室, 中国地质调查局青岛海洋地质研究所, 山东 青岛 266071

3. 

青岛易科检测科技有限公司, 山东 青岛 266199

4. 

中国地质大学(武汉)工程学院, 湖北 武汉 430074

收稿日期: 2017-07-10  修回日期: 2018-01-12  接受日期: 2018-03-21

基金项目: 中国地质调查局地质调查项目“天然气水合物测试技术与模拟实验”(DD20160216);国家自然科学基金资助项目(41406076)

作者简介: 陈宇峰, 硕士研究生, 环境工程专业。E-mail:861956316@qq.com

通讯作者: 贺行良, 硕士, 高级工程师, 从事同位素有机地球化学分析测试与研究工作。E-mail:qdhxl2008@126.com

Study on Oxidation Rate and Isotope Fractionation of Methane in Bohai Sea Sediments

1. 

Institute of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China

2. 

The Key Laboratory of Gas Hydrate, Ministry of Natural Resources; Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China

3. 

Qingdao ECH Testing Co., LTD., Qingdao 266199, China

4. 

Faculty of Engineering, China University of Geosciences(Wuhan), Wuhan 430074, China

Corresponding author: HE Xing-liang, qdhxl2008@126.com

Received Date: 2017-07-10
Revised Date: 2018-01-12
Accepted Date: 2018-03-21

摘要:渤海蕴藏着大量的油气资源,其主要成分是温室气体甲烷,自然环境下或人为因素的影响会引起其泄露与迁移,对环境造成负面的影响。但是,泄露与迁移过程中微生物会氧化绝大部分甲烷,而不同的环境条件会影响氧化过程中的速率及碳同位素分馏过程。为了更好地认识渤海沉积物中甲烷氧化规律和同位素分馏规律以及为进一步研究此区域的甲烷氧化提供参考,本文选取渤海沉积物作为进行实验室模拟降解实验原料,借助气相色谱和气相色谱-同位素比值质谱仪测定渤海沉积物中的甲烷氧化速率,确定了甲烷氧化碳同位素分馏系数ε。结果表明:渤海沉积物中甲烷氧化作用以好氧氧化占主导,氧化温度和气体流速是影响甲烷氧化速率的主要因素。在连续培养的模式下,当温度由28℃降至15℃时,甲烷的平均氧化速率降低60%±10%,即温度越低越不利于甲烷氧化作用的发生。而气体流速由50 μL/min增加至150 μL/min时,甲烷的平均氧化速率增加90%±10%,即增加气体流速有利于氧化反应速率的提高。实验还发现,甲烷碳、氢同位素的分馏效应主要受氧化温度制约,分馏程度与温度呈正相关。实验结论认为温度是影响甲烷氧化速率和同位素分馏规律的重要因素。

关键词: 渤海沉积物, 甲烷氧化速率, 同位素分馏, 生物降解, 气相色谱法, 气相色谱-同位素比值质谱法

要点

(1) 选取渤海沉积物进行了不同条件下的甲烷氧化实验。

(2) 渤海沉积物氧化甲烷时以好养氧化为主。

(3) 温度是影响甲烷氧化的重要因素。

Study on Oxidation Rate and Isotope Fractionation of Methane in Bohai Sea Sediments

ABSTRACT

BACKGROUND:

The Bohai Sea contains a large amount of oil and gas, the main component of which is methane. The influence of natural or human factors will cause its leakage and migration and then have a negative impact on the environment. However, most of the methane would be oxidized by microorganisms during the leakage and migration processes. Meanwhile, the different environmental conditions will affect oxidation rate and carbon isotope fractionation of methane.

OBJECTIVE:

In order to better understand the law of isotope fractionation and methane oxidization in the sediments and to provide reference for further related research in this area, the Bohai Sea sediments were selected as laboratory raw materials for the degradation of laboratory experiments and are described in this paper.

METHODS:

Gas Chromatography and Gas Chromatography-Isotope Ratio Mass Spectrometry were used to determine the methane oxidation rate, and the carbon isotope fractionation coefficient ε of methane was determined.

RESULTS:

The results show that the aerobic oxidation of methane is dominant. Oxidation temperature and gas flow rate are the main factors affecting the rate of methane oxidation. In the mode of continuous incubation, when the temperature reduced from 28℃ to 15℃, the average oxidation rate reduced by 60%±10%, indicating that the lower temperature is not helpful for methane oxidation. When the gas flow rate increases from 50 to 150 μL/min, the average oxidation rate of methane increases by 90%±10%. This indicates that the higher gas flow rate is favorable to the increase of oxidation rate. It is also found that the fractionation effect of carbon and hydrogen isotopes are mainly affected by temperature where the fractionation degree is positively correlated with temperature.

CONCLUSIONS:

Temperature is an important factor affecting methane oxidation rate and isotopic fractionation.

KEY WORDS: Bohai sediments, oxidation rate of methane, isotope fractionation, biodegradation, Gas Chromatography, Gas Chromatography-Isotope Ratio Mass Spectrometry

HIGHLIGHTS

(1) Bohai Sea sediments were selected for methane oxidation experiment under different conditions.

(2) The aerobic oxidation of methane oxidation was dominant.

(3) The temperature was an important factor affecting the rate of methane oxidation.

本文参考文献

[1]

Asadieh B, Krakauer N Y. Global trends in extreme precipitation:Climate models versus observations[J]. Hydrology & Earth System Sciences Discussions, 2014, 11(11): 11369-11393.

[2]

Cai W J, Borlace S, Lengaigne M, et al. Increasing frequency of extreme Elnino events due to greenhouse warming[J].Nature Climate Change, 2014, 4(2): 111-116. doi: 10.1038/nclimate2100

[3]

Solomon S, Qin D, Manning M, et al. Summary for Poli-cymakers Climate Change 2007: The Physical Dcience Basis[R]. 2007.

[4]

Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at continental margins and its influence on climate change[J]. Geofluids, 2010, 2(2): 109-126.

[5]

李广之, 汪林自. 吸附态轻烃的解吸与分析[J]. 物探与化探, 2000, 24(1): 34-42.

Li G Z, Wang L Z. The desorption, analysis and application of adsorbed light hydrocarbon[J]. Geophysical & Geochemical Exploration, 2000, 24(1): 34-42.

[6]

Wang W, Wang L, Shao Z, et al. Diversity and abundance of oil-degrading bacteria and alkane hydroxylase genes in the subtropical seawater of Xiamen Island[J].Microbial Ecology, 2010, 60(2): 429-439. doi: 10.1007/s00248-010-9724-4

[7]

Rasheed M A, Prasanna M V, Kumar T S, et al. Geo-microbial prospecting method for hydrocarbon exploration in Vengannapalli Village, Cuddapah Basin, India[J]. Current Science, 2008, 95(3): 361-366.

[8]

Martens C S, Berner R A. Methane production in the interstitial waters of sulfate depleted marine sediments[J].Science, 1974, 185(4157): 1167. doi: 10.1126/science.185.4157.1167

[9]

Knittel K, Boetius A. Anaerobic oxidation of methane:Progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63(63): 311.

[10]

Wegener G, Boetius A. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes[J].Biogeosciences, 2009, 6(5): 867-876. doi: 10.5194/bg-6-867-2009

[11]

Kinnaman F S, Valentine D L, Tyler S C, et al. Carbon and hy-drogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane[J].Geochimica Cosmochimica Acta, 2007, 71(2): 271-283. doi: 10.1016/j.gca.2006.09.007

[12]

Redmond M C, Valentine D L, Sessions A L, et al. Iden-tification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing[J]. Applied & Environmental Microbiology, 2010, 76(19): 6412-6422.

[13]

吴自军, 任德章, 周怀阳, 等. 海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J]. 地球科学进展, 2013, 28(7): 765-773. doi: 10.11867/j.issn.1001-8166.2013.07.0765

Wu Z J, Ren D Z, Zhou H Y, et al. Anaerobic oxidation of methane (AOM) and its influence on inorganic sulfur cycle in marine sediments[J].Advances in Earth Science, 2013, 28(7): 765-773. doi: 10.11867/j.issn.1001-8166.2013.07.0765

[14]

Wegener G. Methane Oxidation and Carbon Assimilation in Marine Sediments[R]. University of Bremen, 2008: 1-153.

[15]

Blees H J R. Methane Oxidation and Emission in Lake Lugano (Southern Switzerland): A Lipid Biomarker and Isotopic Approach[R]. 2015.

[16]

Yoshioka H, Maruyama A, Nakamura T, et al. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin[J].Geobiology, 2010, 8(3): 223-233. doi: 10.1111/gbi.2010.8.issue-3

[17]

Knittel K, Lösekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps[J].Applied and Environmental Microbiology, 2005, 71(1): 467-479. doi: 10.1128/AEM.71.1.467-479.2005

[18]

刘涛, 郑国东, 潘永信, 等. 地质微生物对海洋天然气水合物的影响[J]. 天然气地球科学, 2009, 20(6): 992-999.

Liu T, Zheng G D, Pan Y X, et al. Influence of geo-microbes on the formation of marine gas hydrates[J]. Natural Gas Geoscience, 2009, 20(6): 992-999.

[19]

Reed D W, Fujita Y, Delwiche M E, et al. Microbial communities from methane hydrate-bearing deep marine sediments in a Forearc Basin[J].Applied and Environmental Microbiology, 2002, 68(8): 3759-3770. doi: 10.1128/AEM.68.8.3759-3770.2002

[20]

金文标, 姚建军, 陈孟晋, 等. 天然气微生物勘探指示菌的筛选[J]. 天然气工业, 2002, 22(5): 20-22.

Jin W B, Yao J J, Chen M J, et al. Screening of microbial exploration indicators for natural gas[J]. Natural Gas Industry, 2002, 22(5): 20-22.

[21]

胡国全, 张辉, 邓宇, 等. 微生物法在油气勘探中的应用研究[J]. 应用与环境微生物学报, 2006, 12(6): 824-827.

Hu G Q, Zhang H, Deng Y, et al. Application of microbial technique in prospection for oil and gas[J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(6): 824-827.

[22]

贺行良, 王江涛, 刘昌岭, 等. 天然气水合物客体分子与同位素组成特征及其地球化学应用[J]. 海洋地质与第四纪地质, 2012, 32(3): 163-174.

He X L, Wang J T, Liu C L, et al. Guest molecular and isotopic compositions of natural gas hydrates and its geochemical applications[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 163-174.

[23]

Kleindienst S, Herbst F A, Stagars M, et al. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps[J].The ISME Journal, 2014, 8(10): 2029-2044. doi: 10.1038/ismej.2014.51

[24]

韩冰. 甲烷氧化菌的微生态解析及其应用基础研究[D]. 北京: 清华大学, 2008.

Han B. Molecular Ecology Study on Methanotrophs and Fundamental Research on the Applications of Methanotrophs[D]. Beijing: Tsinghua University, 2008.

[25]

陈立雷, 李双林, 赵青芳, 等. 海洋油气微生物好氧降解轻烃模拟试验[J]. 海洋环境科学, 2013, 32(6): 922-925.

Chen L L, Li S L, Zhao Q F, et al. Simulating test of aerobic marine oil and gas microbial degradation of light hydrocarbons[J]. Marine Environmental Science, 2013, 32(6): 922-925.

[26]

贺行良, 夏宁, 刘昌岭, 等. FID/TCD并联气相色谱法测定天然气水合物的气体组成[J]. 分析测试学报, 2012, 31(2): 206-210.

He X L, Xia N, Liu C L, et al. Compositional analysis of gases in natural gas hydrates by GC-FID/TCD[J]. Journal of Instrumental Analysis, 2012, 31(2): 206-210.

[27]

贺行良, 刘昌岭, 王江涛, 等. 气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素[J]. 岩矿测试, 2012, 31(1): 154-158.

He X L, Liu C L, Wang J T, et al. Measurement of carbon and hydrogen isotopes of natural gas hydrate-bound gases by gas chromatography-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 154-158.

[28]

Mariotti A, Germon J C, Hubert P, et al. Experimental determination of nitrogen kinetic isotope fractionation:Some principles; illustration for the denitrification and nitrification processes[J].Plant and Soil, 1981, 62(3): 413-430. doi: 10.1007/BF02374138

[29]

Chu K H, Mahendra S, Song D L, et al. Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes[J]. Environmental Science & Technology, 2004, 38(11): 3126.

[30]

陈立雷, 贺行良, 赵青芳, 等. 轻烃在海洋沉积物中的吸附与解吸行为研究[J]. 天然气地球科学, 2013, 24(4): 798-802.

Chen L L, He X L, Zhao Q F, et al. Experimental research on the behavior of the absorption and desorption of light hydrocarbons in marine sediments[J]. Natural Gas Geoscience, 2013, 24(4): 798-802.

[31]

陈义兰, 吴永亭, 刘晓瑜, 等. 渤海海底地形特征[J]. 海洋科学进展, 2013, 31(1): 75-82.

Chen Y L, Wu Y T, Liu X Y, et al. Features of seafloor topography in the Bohai Sea[J]. Advances in Marine Science, 2013, 31(1): 75-82.

[32]

唐玉斌, 孙常宇, 陈芳艳, 等. 一株艹屈高效降解菌的分离鉴定及其降解特性[J]. 微生物学通报, 2009, 36(4): 593-597.

Tang Y B, Sun C Y, Chen F Y, et al. Isolation and identification of a chrysene-degrading strain and its degradation characteristics[J]. Microbiology, 2009, 36(4): 593-597.

[33]

Nesbit S P, Breitenbeck G A. A laboratory study of factors influencing methane uptake by soils[J]. Agriculture Ecosystems & Environment, 1992, 41(1): 39-54.

[34]

贺行良, 刘昌岭, 王江涛, 等. 天然气水合物气体组成分析技术[J]. 海洋地质前沿, 2011, 27(6): 65-73.

He X L, Liu C L, Wang J T, et al. An overview of analytical techniques for composition of hydrates-bound gas[J]. Marine Geology Frontiers, 2011, 27(6): 65-73.

相似文献(共19条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

饶竹, 何淼. 圆盘固相萃取富集-气相色谱法测定地表水中有机氯和有机磷农药. 岩矿测试, 2008, 27(1): 12-16.

[3]

孙青, 李松. 高压气相色谱法快速测定痕量长链烯酮. 岩矿测试, 2008, 27(1): 5-8.

[4]

邓天龙, 王爽. 水环境中苯系污染物的分析研究进展. 岩矿测试, 2008, 27(2): 141-145.

[5]

贺行良, 刘昌岭, 王江涛, 张媛媛, 孟庆国. 气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素. 岩矿测试, 2012, 31(1): 154-158.

[6]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[7]

焦杏春, 王广, 叶传永, 曹红英, 王晓春, 杨永亮, 刘晓端. 应用单体碳同位素技术探析农田土壤中多环芳烃的植物降解过程. 岩矿测试, 2014, 33(6): 863-870.

[8]

王磊, 刘庆学, 安彩秀, 高希娟, 刘金巍, 李娜. 柱前衍生-气相色谱法同时测定水中醛酮类和硝基苯类化合物. 岩矿测试, 2010, 29(5): 486-490.

[9]

冯朝军, 潘建明, 王红群, 皮业华. 微波消解-气相色谱法测定沉积物中的木质素. 岩矿测试, 2011, 30(1): 23-26.

[10]

高松, 张兰英, 王琳, 宋杰, 崔哲, 吕春欣, 刘鹏, 邓银舟. Needle trap-顶空进样-气相色谱法分析地下水中的苯系物. 岩矿测试, 2010, 29(5): 508-512.

[11]

房贤文, 谭培功, 单红, 董新春, 张婷婷. 气相色谱法测定地表水中醛酮类化合物. 岩矿测试, 2007, 26(5): 363-366.

[12]

魏峰, 沈小明, 陈海英, 沈加林. 土壤和沉积物中22种有机氯农药和8种多氯联苯的气相色谱分析. 岩矿测试, 2013, 32(6): 952-958.

[13]

王宁, 朱庆增, 谢曼曼, 宋智甲, 王道聪, 贾秋唤, 岑况, 储国强, 孙青. 尿素络合法分离-气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素. 岩矿测试, 2015, 34(4): 471-479. doi: 10.15898/j.cnki.11-2131/td.2015.04.016

[14]

张逐月, 刘美美, 谢曼曼, 王道聪, 凌媛, 尚文郁, 刘舒波, 岑况, 孙青. 5A分子筛吸附混合溶剂洗脱-气相色谱-同位素质谱分析土壤中正构烷烃单体碳同位素. 岩矿测试, 2012, 31(1): 178-183.

[15]

方国桢, 方梅. 气相色谱和薄层色谱法在形态分析中的应用. 岩矿测试, 1996, (4): 299-310.

[16]

吴淑琪, 张月琴, 张淑芬. 吹扫捕集-气相色谱法测定水中七种氯苯类化合物. 岩矿测试, 2005, (3): 189-192196.

[17]

孟郁苗, 胡瑞忠, 高剑峰, 毕献武, 黄小文. 锑的地球化学行为以及锑同位素研究进展. 岩矿测试, 2016, 35(4): 339-348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

[18]

吴夏, 涂林玲, 杨会, 王华, 朱晓燕, 张美良. 水样中溶解性无机碳同位素测试前处理方法对比研究. 岩矿测试, 2013, 32(4): 649-658.

[19]

佟玲, 杨佳佳, 吴淑琪, 张玲金. 沉积物样品中干扰物的去除及多种持久性有机污染物气相色谱分析. 岩矿测试, 2011, 30(5): 601-605.

计量
  • PDF下载量(14)
  • 文章访问量(223)
  • HTML全文浏览量(49)
  • 被引次数(0)
目录

Figures And Tables

渤海沉积物中甲烷氧化速率及同位素分馏规律研究

陈宇峰, 郑秀丽, 李晶, 贺行良, 刘昌岭, 孟庆国, 秦德谛, 张培玉