【引用本文】 周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113
ZHOU Wei, ZENG Meng, WANG Jian, et al. Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113

熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素

1. 

国家地质实验测试中心, 北京 100037

2. 

江西省地质矿产勘查开发局赣西北地质大队中心实验室, 江西 九江 336017

收稿日期: 2017-04-10  修回日期: 2018-01-09  接受日期: 2018-05-07

基金项目: 中国地质调查局地质调查工作项目(DD20179152)

作者简介: 周伟, 工程师, 从事X射线荧光光谱分析和化学分析工作研究。E-mail:zhouwei@cags.ac.cn

通讯作者: 李迎春, 高级工程师, 从事X射线荧光光谱分析方法研究。E-mail:liyingchun@cags.ac.cn

Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation

1. 

National Research Center for Geoanalysis, Beijing 100037, China

2. 

Ganxibei Geological Brigade, Jiangxi Bureau of Exploration & Development of Geology & Mineral Resources, Jiujiang 336017, China

Corresponding author: LI Ying-chun, liyingchun@cags.ac.cn

Received Date: 2017-04-10
Revised Date: 2018-01-09
Accepted Date: 2018-05-07

摘要:应用熔融制样-X射线荧光光谱法(XRF)分析矿石样品具有定量准确、试剂用量少、重现性好等优点,但由于目前稀土标准物质较少,不能满足复杂稀土矿石类样品的准确定量要求。本文采用配置人工标准样品,解决了现有稀土标准物质较少的问题,加入高纯稀土氧化物La2O3、CeO2、Y2O3扩展了La、Ce、Y的线性范围,利用人工标准样品和现有稀土标准物质、碳酸盐标准物质制作工作曲线,建立了XRF测定稀土矿石、矿化样品中25种主量元素和稀土元素的分析方法。针对主量元素采用理论α系数法校准,稀土元素采用经验系数法校准,对有谱线重叠的元素进行干扰校正,使绝大多数主量元素的相对标准偏差(RSD,n=13)小于1.5%,稀土元素含量在300μg/g以上时RSD(n=13)在0.69%~6.94%之间。通过未知样品考核,主量元素、稀土元素和烧失量的加和结果为99.41%~100.63%,满足《地质矿产实验室测试质量管理规范》的一级标准。

关键词: 稀土矿石, X射线荧光光谱法, 基体效应, 人工标准样品

要点

(1) 应用X射线荧光光谱法分析地质样品中主量、次量元素的技术优势,解决了当前分析复杂稀土矿石类样品定量分析的问题。

(2) 采用高纯稀土氧化物与标准物质配置人工标样,扩展了定量方法的适用范围,优化仪器条件使测定结果更加准确、可靠。

(3) 稀土元素检出限低于60 μg/g,对于高含量稀土元素能够满足定量分析要求。

Determination of Major and Rare Earth Elements in Rare Earth Ores by X-ray Fluorescence Spectrometry with Fusion Sample Preparation

ABSTRACT

BACKGROUND:

The analysis of ore samples by X-ray Fluorescence Spectrometry (XRF) has the advantages of quantitative accuracy, less reagent and good reproducibility. However, due to the lack of rare earth standard materials at present, the accurate quantitative requirements for complex rare earth ore samples cannot be met.

BAOBJECTIVES:

To establish the analysis method for XRF determination of 25 major elements and rare earth elements in rare earth ores and mineralized samples.

METHODS:

The use of artificial standard samples solved the problem of lack of standard materials. The linear ranges of La, Ce and Y were extended by adding high purity rare earth oxides La2O3, CeO2 and Y2O3. A calibration line was produced using artificial standard samples, existing standard materials of rare earth and carbonate. The major elements were calibrated by a theoretical alpha coefficient method, whereas the rare earth elements were calibrated by an empirical coefficient method. Interference correction was used for elements with overlapping spectral lines.

RESULTS:

The relative standard deviations (RSD, n=13) of most major elements were less than 1.5%, whereas the RSDs of rare earth elements were 0.69%-6.94% when their concentrations were above 300 μg/g.

CONCLUSIONS:

The method was evaluated by unknown samples and the sums of major elements, rare earth elements and loss of ignition were 99.41%-100.63%. The method satisfies the first criterion of Geology and Minerals Laboratory Testing Quality Management Standards.

KEY WORDS: rare earth ore, X-ray Fluorescence Spectrometry, matrix effect, artificial standard substances

HIGHLIGHTS

(1) The technical advantages of X-ray Fluorescence Spectrometry applied in determination of major and minor elements in geological samples solves the problem regarding quantitative analysis of complex rare earth ore samples.

(2) High-purity rare earth oxides and standard materials were used to prepare artificial standard samples, expanding the application range of quantitative methods and optimizing the instrument conditions to make the measurements more accurate and reliable.

(3) The detection limit of rare earth elements is lower than 60 μg/g, meeting the requirements of quantitative analysis of ores with high-content rare earth elements.

本文参考文献

[1]

Simandl G J. Geology and market-dependent significance of rare earth element resources[J].Mineralium Deposita, 2014, 49(8): 889-904. doi: 10.1007/s00126-014-0546-z

[2]

Jordens A, Cheng Y P, Waters K E, et al. A review of the beneficiation of rare earth element bearing minerals[J]. Minerals Engineering, 2013, 41(1): 97-114.

[3]

Simandl G J, Fajber R, Paradis S, et al. Portable X-ray fluore-scence in the assessment of rare earth element-enriched sedimentary phosphate deposits[J].Geochemistry Exploration Environment Analysis, 2014, 14(2): 161-169. doi: 10.1144/geochem2012-180

[4]

Xie F, Zhang T A, Dreisinger D, et al. A critical review on solvent extraction of rare earths from aqueous solutions[J]. Minerals Engineering, 2014, 56(2): 10-28.

[5]

李小莉, 张勤. 粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J]. 冶金分析, 2013, 33(7): 35-40.

Li X L, Zhang Q. Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2013, 33(7): 35-40.

[6]

张文娟, 谢玲君, 刘鸿, 等. ICP-AES法测定氟碳铈矿中低含量稀土总量[J]. 有色金属科学与工程, 2016, 7(6): 141-146.

Zhang W J, Xie L J, Liu H, et al. Determination of low content total rare earth in bastnaesite by ICP-AES[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 141-146.

[7]

罗立强,詹秀春,李国会. X射线荧光光谱仪[M] . 北京: 化学工业出版社, 2008

Luo L Q,Zhan X C,Li G H. X-ray Fluorescence Spectrometer[M] . Beijing: Chemical Industry Press, 2008
[8]

Claisse F, Blanchette J S B(著). 卓尚军(译). 硼酸盐熔融的物理与化学[M]. 上海: 华东理工大学出版社, 2006.

Claisse F, Blanchette J S B (Authors). Zhuo S J (Translator). Physics and Chemistry of Borate Melting[M]. Shanghai: East China University of Science and Technology Press, 2006.

[9]

Parra L M M, Greaves E D, Paz J L, et al. Simultaneous determination of rare earths by X-ray fluorescence spectrometry using a fundamental parameters method[J].X-Ray Spectrometry, 1993, 22(5): 362-367. doi: 10.1002/(ISSN)1097-4539

[10]

黄肇敏, 周素莲. X射线荧光光谱法测定混合稀土氧化物中稀土分量[J]. 光谱学与光谱分析, 2007, 27(9): 1873-1877.

Huang Z M, Zhou S L. Method for determination of RE2O3 by X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1873-1877.

[11]

李可及, 肖颖. 熔融制样-X射线荧光光谱法测定氟碳铈矿流程样品[J]. 稀土, 2016, 37(2): 144-148.

Li K J, Xiao Y. Determination of bastnaesite process samples by fusion X-ray fluorescence spectrometry[J]. Chinese Rare Earths, 2016, 37(2): 144-148.

[12]

Legkodymov A A, Kuper K E, Nazmov V P, et al. Applying hard X-rays to determination of the minimum detection levels of rare earth element by the XRFA-SR method[J].Bulletin of the Russian Academy of Sciences Physics, 2015, 79(1): 103-108. doi: 10.3103/S1062873815010207

[13]

于丽丽, 汤玉河, 肖飞燕, 等. X射线荧光光谱无标定量测定稀土矿石中五氧化二磷[J]. 冶金分析, 2017, 37(1): 57-60.

Yu L L, Tang Y H, Xiao F Y, et al. Determination of phosphorus pentoxide in rare earth ore by X-ray fluorescence spectrometry coupled with standard-less quantitative analysis[J]. Metallurgical Analysis, 2017, 37(1): 57-60.

[14]

冯丽丽, 张庆建, 丁仕兵, 等. X射线荧光光谱法测定锆矿中10种主次成分[J]. 冶金分析, 2014, 34(7): 51-55.

Feng L L, Zhang Q J, Ding S B, et al. Determination of ten major and minor components in zirconium ore by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2014, 34(7): 51-55.

[15]

罗学辉, 苏建芝, 汤宇磊, 等. 高倍稀释熔融制样-X射线荧光光谱法测定镍矿石中主次成分[J]. 冶金分析, 2017, 37(9): 52-56.

Luo X H, Su J Z, Tang Y L, et al. Determination of major and minor components in nickel ore by X-ray fluorescence spectrometry with fusion sample preparation of high dilution[J]. Metallurgical Analysis, 2017, 37(9): 52-56.

[16]

李迎春, 周伟, 王健, 等. X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J]. 岩矿测试, 2013, 32(2): 249-253.

Li Y C, Zhou W, Wang J, et al. Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2013, 32(2): 249-253.

[17]

沈亚婷, 李迎春, 孙梦荷, 等. 波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J]. 光谱学与光谱分析, 2017, 37(7): 2216-2224.

Shen Y T, Li Y C, Sun M H, et al. Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J]. Spectroscopy and Spectral Analysis, 2017, 37(7): 2216-2224.

[18]

李国会, 李小莉. X射线荧光光谱分析熔融法制样的系统研究[J]. 冶金分析, 2015, 35(7): 1-9.

Li G H, Li X L. Systematic study on the fusion sample preparation in X-ray fluorescence spectrometric analysis[J]. Metallurgical Analysis, 2015, 35(7): 1-9.

[19]

詹秀春, 陈永君, 郑妙子, 等. 地质样品X射线荧光分析中的背景相关曲线及其应用[J]. 岩矿测试, 2003, 22(3): 161-164.

Zhan X C, Chen Y J, Zheng M Z, et al. Background-related curve in the X-ray fluorescence spectrometric analysis of geological materials and its application[J]. Rock and Mineral Analysis, 2003, 22(3): 161-164.

相似文献(共20条)

[1]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[2]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[3]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[4]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[5]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[6]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[7]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[8]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[9]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[10]

刘晓杰, 李玉梅, 刘丽静. 电感耦合等离子体发射光谱法测定稀土矿石中的三氧化二铝. 岩矿测试, 2013, 32(3): 436-440.

[11]

付永立, 程文翠, 张兆法, 魏利, 孙孟华, 庞雪敏. 多仪器协同-X射线荧光光谱法在区域地球化学调查分析中的应用评价. 岩矿测试, 2017, 36(5): 495-500. doi: 10.15898/j.cnki.11-2131/td.201703070028

[12]

于兆水, 张勤, 李小莉, 樊守忠, 潘晏山, 李国会. 高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素. 岩矿测试, 2014, 33(6): 844-848.

[13]

普旭力, 吴亚全, 王鸿辉, 董清木, 蔡鹭欣, 潘忠厚. X射线荧光光谱法同时测定铁矿石中主次量组分. 岩矿测试, 2008, 27(5): 353-356.

[14]

陈静, 高志军, 陈冲科, 刘延霞, 张明炜. X射线荧光光谱法分析地质样品的应用技巧. 岩矿测试, 2015, 34(1): 91-98. doi: 10.15898/j.cnki.11-2131/td.2015.01.012

[15]

刘玉纯, 胡浩, 梁述廷. X射线荧光光谱法同时测定土壤样品中碳氮等多元素. 岩矿测试, 2004, (2): 102-108.

[16]

邹海峰, 苏克. X射线荧光光谱法直接测定地质样品中多种痕量元素. 岩矿测试, 1998, (3): 207-210.

[17]

梁国立, 强小平, 邓赛文, 王有增, 方明渭, 田寅贞. X射线荧光光谱快速分析铝土矿的方法研究. 岩矿测试, 2001, (4): 305-308.

[18]

逯义. X射线荧光光谱法测定稀土精矿中的稀土元素分量. 岩矿测试, 2012, 31(2): 277-281.

[19]

白雪冰, 王卿, 周长祥, 袁家义. X射线荧光光谱法测定地质样品中的氯和硫. 岩矿测试, 2004, (3): 225-227.

[20]

尹静, 黄睿涛. 粉末压片制样-X射线荧光光谱法测定铁矿石中锌砷锰. 岩矿测试, 2011, 30(4): 491-493.

计量
  • PDF下载量(27)
  • 文章访问量(208)
  • HTML全文浏览量(61)
  • 被引次数(0)
目录

Figures And Tables

熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素

周伟, 曾梦, 王健, 张磊, 李迎春