【引用本文】 王园园, 宋晓明, 温玉娟, 等. 固相萃取-衍生化-气相色谱-质谱联用测定不同水体中类固醇雌激素方法研究[J]. 岩矿测试, 2017, 36(5): 519-528. doi: 10.15898/j.cnki.11-2131/td.201705310092
WANG Yuan-yuan, SONG Xiao-ming, WEN Yu-juan, et al. Determination of Steroid Estrogens in Different Water Samples Using SPE-derivatization Coupled with GC-MS[J]. Rock and Mineral Analysis, 2017, 36(5): 519-528. doi: 10.15898/j.cnki.11-2131/td.201705310092

固相萃取-衍生化-气相色谱-质谱联用测定不同水体中类固醇雌激素方法研究

1. 

沈阳大学区域污染环境生态修复教育部重点实验室, 辽宁 沈阳 110044

2. 

吉林大学地下水环境与资源教育部重点实验室, 吉林 长春 130021

3. 

中国石油天然气股份有限公司吉林油田分公司新民采油厂, 吉林 松原 138001

收稿日期: 2017-05-31  修回日期: 2017-06-30  接受日期: 2017-07-17

基金项目: 国家自然科学基金资助项目(41472237,41471409);沈阳市科学事业费竞争性选择项目;辽宁省创新团队项目(LT2015017)

作者简介: 王园园, 硕士研究生, 环境科学与工程专业。E-mail:wangyuanyuan5921@qq.com。

通讯作者: 杨悦锁, 教授, 主要从事污染地下水和土壤的场地调查、污染物识别等方面研究。E-mail:yangyuesuo@jlu.edu.cn

Determination of Steroid Estrogens in Different Water Samples Using SPE-derivatization Coupled with GC-MS

1. 

Key Laboratory of Regional Environment and Eco-restoration(Shenyang University), Ministry of Education, Shenyang 110044, China

2. 

Key Laboratory of Groundwater Environment and Resources(Jilin University), Ministry of Education, Changchun 130021, China

3. 

Xinmin Oil Production Plant of Jilin Oilfield, China Petroleum and Natural Gas Co., LTD, Songyuan 138001, China

Corresponding author: YANG Yue-suo, yangyuesuo@jlu.edu.cn

Received Date: 2017-05-31
Revised Date: 2017-06-30
Accepted Date: 2017-07-17

摘要:针对地下水及地表水体样品中痕量类固醇雌激素(SEs)污染问题,本文建立了固相萃取-衍生化-气相色谱-质谱联用(SPE-GC-MS)同时测定不同水体中5种SEs:雌酮(E1)、17α-雌二醇(17α-E2)、17β-雌二醇(17β-E2)、17α-乙炔基雌二醇(EE2)、雌三醇(E3)的分析检测方法。通过优化固相萃取过程和衍生化条件以及复杂样品的二次净化过程,发现用Oasis HLB柱萃取,用乙酸乙酯洗脱,40℃条件衍生化20 min可以达到最佳效果,并且经甲醇活化过的Generik NAX柱对复杂样品的二次净化效果较好。本方法对E1、17α-E2、17β-E2和EE2、E3检测的线性范围分别为5~1000 ng/L和10~1000 ng/L;方法检出限和定量限分别为2~3 ng/L和6.5~10 ng/L;对水样的加标回收率范围为80%~120%;该方法测定SEs峰面积的日内相对标准偏差为6.8%~10%。应用此方法对鱼塘水、河水、地下水、污水处理厂二级出水进行了SEs污染水平检测,结果表明该检测技术可以有效应用于不同水质地表及地下水体类固醇雌激素化学风险识别与评估。

关键词: 水样, 类固醇雌激素, 气相色谱-质谱法, 固相萃取, 衍生化

Determination of Steroid Estrogens in Different Water Samples Using SPE-derivatization Coupled with GC-MS

KEY WORDS: water samples, steroid estrogens, Gas Chromatography-Mass Spectrometry, Solid Phase Extraction, derivatization

Highlights

· A secondary purification process is adopted in catering for complex sample detection.

· Employment of ethyl acetate elution can reduce human health’s risk compared with other common chemicals.

· The developed approach is approved to be useful and cost-effective for the detection of multiple steroidal estrogen.

本文参考文献

[1]

Chowdhury R R, Charpentier P A, Ray M B, et al. Photode-gradation of 17β-estradiol in aquatic solution under solar irradiation:Kinetics and infiuencing water parameters[J].Journal of Photochemistry and Photobiology A:Chemistry, 2011, 219: 67-75. doi: 10.1016/j.jphotochem.2011.01.019

[2]

Chambers K B, Casey F X, Hakk H, et al. Potential bioactivity and association of 17β-estradiol with the dissolved and colloidal fractions of manure and soil[J].Science of the Total Environment, 2014, 494-495: 58-64. doi: 10.1016/j.scitotenv.2014.06.121

[3]

Zheng W, Zou Y, Li X, et al. Fate of estrogen conjugate 17α-estradiol-3-sulfate in dairy wastewater:Comparison of aerobic and anaerobic degradation and metabolite formation[J].Journal of Hazardous Materials, 2013, 258-259: 109-115. doi: 10.1016/j.jhazmat.2013.04.038

[4]

Liu Z H, Lu G N, Yin H, et al. Removal of natural estro-gens and their conjugates in municipal wastewater treatment plants:A critical review[J]. Environment Science & Technology, 2015, 49: 5288-5300.

[5]

都韶婷, 金崇伟, 刘越, 等. 水体SEs污染现状研究进展[J]. 环境科学, 2013, 34(9): 3358-3365.

Du S T, Jin C W, Liu Y, et al. A review on current situations of steroid estrogen in the water system[J]. Environmental Science, 2013, 34(9): 3358-3365.

[6]

Sun W L, Zhou K. Adsorption of 17β-estradiol by multi-walled carbon nanotubes in natural waters with or without aquatic colloids[J].Chemical Engineering Journal, 2014, 258: 185-193. doi: 10.1016/j.cej.2014.07.087

[7]

D'Alessio M, Vasudevan D, Lichwa J, et al. Fate and transport of selected estrogen compounds in Hawaii soils:Effect of soil type and macropores[J].Journal of Contaminant Hydrology, 2014, 166: 1-10. doi: 10.1016/j.jconhyd.2014.07.006

[8]

Combalbert S, Hernandez-raquet G. Occurrence, fate and biodegradation of estrogens in sewage and manure[J].Applied Microbiology and Biotechnology, 2010, 86(6): 1671-1692. doi: 10.1007/s00253-010-2547-x

[9]

Jiang J Q, Yin Q, Zhou J L, et al. Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters[J].Chemosphere, 2005, 61(4): 544-550. doi: 10.1016/j.chemosphere.2005.02.029

[10]

Shrestha S L, Casey F X, Hakk H, et al. Fate and transformation of an estrogen conjugate and its metabolites in agricultural soils[J]. Environmental Science & Technology, 2012, 46: 11047-11053.

[11]

Bai X L, Shrestha S L, Francis X M, et al. Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems[J].Journal of Contaminant Hydrology, 2014, 168: 17-24. doi: 10.1016/j.jconhyd.2014.09.001

[12]

Lee J, Bartelthunt S L, Li Y, et al. Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles[J].Science of the Total Environment, 2015, 511: 195-202. doi: 10.1016/j.scitotenv.2014.12.054

[13]

Goeppert N, Dror I, Berkowitz B, et al. Fate and transport of free and conjugated estrogens during soil passage[J].Environmental Pollution, 2015, 206: 80-87. doi: 10.1016/j.envpol.2015.06.024

[14]

Singh R, Cabrera M L, Radcliffe D E, et al. Laccase me-diated transformation of 17β-estradiol in soil[J].Environmental Pollution, 2015, 197: 28-35. doi: 10.1016/j.envpol.2014.11.023

[15]

Postigo C. Synthetic organic compounds and their trans-formation products in groundwater:Occurrence, fate and mitigation[J].Science of the Total Environment, 2015, 503-504: 32-47. doi: 10.1016/j.scitotenv.2014.06.019

[16]

Schuh M C, Casey F X, Hakk H, et al. Effects of field-manure applications on stratified 17β-estradiol concentrations[J].Journal of Hazardous Materials, 2011, 192: 748-752. doi: 10.1016/j.jhazmat.2011.05.080

[17]

Lucci P, Núñ nez O, Galceran M T, et al. Solid-phase extraction using molecularly imprinted polymer for selective extraction of natural and synthetic estrogens from aqueous samples[J].Journal of Chromatography A, 2011, 1218(30): 4828-4833. doi: 10.1016/j.chroma.2011.02.007

[18]

Zheng M, Wang L, Bi Y, et al. Improved method for analyzing the degradation of estrogens in water by solid-phase extraction coupled with ultra performance liquid chromatography-ultraviolet detection[J].Journal of Environmental Sciences, 2011, 23(4): 693-698. doi: 10.1016/S1001-0742(10)60439-1

[19]

Fredj S B, Nobbs J, Tizaoui C, et al. Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid-liquid extraction[J].Chemical Engineering Journal, 2015, 262: 417-426. doi: 10.1016/j.cej.2014.10.007

[20]

Naing N N, Li S F Y, Lee H K, et al. Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography[J].Journal of Chromatography A, 2016, 1427: 29-36. doi: 10.1016/j.chroma.2015.12.012

[21]

Wang J, Chen Z, Li Z, et al. Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for the determination of estrogens in pork samples[J].Food Chemistry, 2016, 204: 135-140. doi: 10.1016/j.foodchem.2016.02.016

[22]

Luo S, Fang L, Wang X, et al. Determination of octyl-phenol and nonylphenol in aqueous sample using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry[J].Journal of Chromatography A, 2010, 1217(43): 6762-6768. doi: 10.1016/j.chroma.2010.06.030

[23]

Wang P, Xiao Y, Liu W, et al. Vortex-assisted hollow fibre liquid-phase microextraction technique combined with high performance liquid chromatography-diode array detection for the determination of oestrogens in milk samples[J].Food Chemistry, 2015, 172: 385-390. doi: 10.1016/j.foodchem.2014.09.092

[24]

González A, Avivar J, Cerdà V, et al. Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid-liquid microextraction prior silylation and gas chromatography[J].Journal of Chromatography A, 2015, 1413: 1-8. doi: 10.1016/j.chroma.2015.08.031

[25]

Manickum T, John W. The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa[J].Analytical and Bioanalytical Chemistry, 2015, 407(17): 4949-4970. doi: 10.1007/s00216-015-8546-0

[26]

王硕, 陈双, 方国臻, 等. 分子印迹技术在环境雌激素检测中的应用[J]. 食品与生物技术学报, 2008, 26(6): 99-104.

Wang S, Chen S, Fang G Z, et al. Determination of environmental estrogens by molecular imprinting technique[J]. Journal of Food Science and Biotechnology, 2008, 26(6): 99-104.

[27]

Bai X, Casey F X, Hakk H, et al. Sorption and degra-dation of 17β-estradiol-17-sulfate in sterilized soil-water systems[J].Chemosphere, 2015, 119: 1322-1328. doi: 10.1016/j.chemosphere.2014.02.016

[28]

Kumar V, Johnson A C, Nakada N, et al. De-conjugation behavior of conjugated estrogens in the raw sewage, activated sludge and river water[J].Journal of Hazardous Materials, 2012, 227-228: 49-54. doi: 10.1016/j.jhazmat.2012.04.078

[29]

Ronan J M, Mchugh B. A sensitive liquid chromatogra-phy/tandem mass spectrometry method for the determination of natural and synthetic steroid estrogens in seawater and marine biota, with a focus on proposed Water Framework Directive Environmental Quality Standards[J].Rapid Communications in Mass Spectrometry, 2013, 27: 738-746. doi: 10.1002/rcm.6505

[30]

Atapattu S N, Rosenfeld J M. Solid phase analytical derivatization of anthropogenic and natural phenolic estrogen mimics with pentafluoropyridine for gas chromatography-mass spectrometry[J].Journal of Chromatography A, 2011, 1218: 9135-9141. doi: 10.1016/j.chroma.2011.10.060

[31]

余方, 潘学军, 王彬, 等. 固相萃取-羟基衍生化-气相色谱/质谱联用测定滇池水体中酚类内分泌干扰物[J]. 环境化学, 2010, 29(4): 744-748.

Yu F, Pan X J, Wang B, et al. Determination of phenols in surface water of dianchi lake by solid extraction-hydroxyl derivatization-GC-MS[J]. Environmental Chemistry, 2010, 29(4): 744-748.

[32]

廖涛, 吴晓翠, 王少华, 等. 固相萃取-气相色谱/质谱联用法同时检测水体中9种环境雌激素[J]. 分析化学, 2013, 41(3): 422-426.

Liao T, Wu X C, Wang S H, et al. Simultaneous detection of nine kinds of estrogens in water by solid phase extraction coupled with gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2013, 41(3): 422-426.

[33]

黄成, 姜理英, 陈建孟, 等. 固相萃取-衍生化气相色谱/质谱法测定制药厂污水中的环境雌激素[J]. 色谱, 2008, 26(5): 618-621.

Huang C, Jiang L Y, Chen J M, et al. Determination of environmental estrogens in pharmacy wastewater using solid-phase extraction-gas chromatography/mass spectrometry with derivatization[J]. Chinese Journal of Chromatography, 2008, 26(5): 618-621.

[34]

Quintana J B, Carpinteiro J, Rodríguez I, et al. Deter-mination of natural and synthetic estrogens in water by gas chromatography with mass spectrometric detection[J].Journal of Chromatography A, 2004, 1024: 177-185. doi: 10.1016/j.chroma.2003.10.074

[35]

Nie Y F, Qiang Z M, Zhang H Q, et al. Determination of endocrine-disrupting chemicals in the liquid and solid phases of activated sludge by solid phase extraction and gas chromatography-mass spectrometry[J].Journal of Chromatography A, 2009, 1216(42): 7071-7080. doi: 10.1016/j.chroma.2009.08.064

[36]

Liu R, Zhou J L, Wilding A, et al. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2004, 1022(1): 179-189.

[37]

黄斌, 潘学军, 万幸, 等. 固相萃取衍生化气相色谱/质谱测定水中类固醇类环境内分泌干扰物[J]. 分析化学, 2011, 39(4): 449-454.

Huang B, Pan X J, Wan X, et al. Simultaneous determination of steroid endocrine disrupting chemicals in water by solid phase extraction-derivatization-gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(4): 449-454.

[38]

张宏, 毛炯, 孙成均, 等. 气相色谱-质谱法测定尿及河底泥中的环境雌激素[J]. 色谱, 2003, 21(5): 451-455.

Zhang H, Mao J, Sun C J, et al. Determination of environmental estrogens in urine and bed mud by gas chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, 2003, 21(5): 451-455.

[39]

Delaune P B, Jr M P. 17β-estradiol in runoff as affected by various poultry litter application strategies[J].Science of the Total Environment, 2013, 444: 26-31. doi: 10.1016/j.scitotenv.2012.11.054

[40]

Zhang H, Shi J, Liu X, et al. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J].Water Research, 2014, 58: 248-257. doi: 10.1016/j.watres.2014.03.074

[41]

Bevacqua C E, Rice C P, Torrents A, et al. Steroid hor-mones in biosolids and poultry litter:A comparison of potential environmental inputs[J].Science of the Total Environment, 2011, 409: 2120-2126. doi: 10.1016/j.scitotenv.2011.02.007

[42]

Caron E, Farenhorst A, Mcqueen R, et al. Mineralization of 17β-estradiol in 36 surface soils from Alberta, Canada[J].Agriculture, Ecosystems and Environment, 2010, 139: 534-545. doi: 10.1016/j.agee.2010.09.014

[43]

Lee B, Kullman S W, Yost E E, et al. Predicting charac-teristics of rainfall driven estrogen runoff and transport from swine AFO spray fields[J].Science of the Total Environment, 2015, 532: 571-580. doi: 10.1016/j.scitotenv.2015.06.051

相似文献(共20条)

[1]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

孙娜, 迟晓峰, 胡风祖, 杨月琴. 多壁碳纳米管固相萃取快速检测水样中铅镉铜铁. 岩矿测试, 2014, 33(4): 545-550.

[4]

刘金, 彭元, 陈红梅, 程先忠. 鸡蛋膜固相萃取-石墨炉原子吸收光谱法测定水样中的微量铅. 岩矿测试, 2012, 31(5): 872-876.

[5]

佟柏龄. 巯基棉富集—大口径毛细管气相色谱法测定水样中痕量烷基汞. 岩矿测试, 1993, (2): 131-134.

[6]

杨立新, 张剑波, 路阳, 董斌, 常凤启. 超高效液相色谱-串联质谱法直接进样测定水样中8种有机污染物. 岩矿测试, 2014, 33(2): 275-281.

[7]

魏显有. 极谱法测定天然水样中痕量相. 岩矿测试, 1994, (1): 74-76.

[8]

张永涛, 张莉, 左海英, 桂建业, 李晓亚, 李桂香. 重氮甲烷衍生气相色谱-质谱法检测地下水中17种酸性除草剂. 岩矿测试, 2010, 29(4): 345-349.

[9]

刘永刚, 刘菲, 郑海涛. 固相萃取-气相色谱法测定水中多环芳烃. 岩矿测试, 2004, (2): 148-152.

[10]

刘金巍, 王磊, 安彩秀, 肖凡, 查晓康, 高希娟. 固相萃取-气相色谱法测定饮用水中的多氯联苯. 岩矿测试, 2011, 30(5): 611-616.

[11]

刘静, 王丽, 曾兴宇, 张艳萍, 王旭亮. 固相萃取-气相色谱法测定海水中狄氏剂和多氯联苯. 岩矿测试, 2014, 33(2): 282-286.

[12]

左海英, 张琳, 刘菲. 固相萃取-液相色谱/质谱法测定地下水中三嗪类和. 岩矿测试, 2014, 33(1): 96-101.

[13]

佟玲, 杨佳佳, 阎妮, 吴淑琪. 加速溶剂提取/GC-MS同时测定动物组织中有机氯农药和多氯联苯. 岩矿测试, 2014, 33(2): 262-269.

[14]

汪雨, 刘聪, 陈舜琮, 武彦文. 气相色谱-质谱法初步鉴定不同品质的麝香. 岩矿测试, 2011, 30(1): 59-62.

[15]

胡秋芬, 杨光宇, 李德良, 尹家元, 杨艳, 台希. 2-(2-喹啉偶氮)-1,3-二羟基苯固相萃取光度法测定水中铀. 岩矿测试, 2004, (3): 187-190.

[16]

王增焕, 王许诺, 谷阳光, 陈瑛娜. 疏水性螯合物固相萃取-原子吸收光谱法测定海水中5种重金属. 岩矿测试, 2017, 36(4): 360-366. doi: 10.15898/j.cnki.11-2131/td.201701200011

[17]

申书昌, 冷茉含, 彭程, 吕伟超. 二氧化钛表面键合配位体固相萃取填料的制备及其吸附性能研究. 岩矿测试, 2018, 37(1): 21-29. doi: 10.15898/j.cnki.11-2131/td.201706080096

[18]

陈卫明, 李庆霞, 张芳, 何小辉, 张勤. 加速溶剂萃取-气相色谱/气相色谱-质谱法测定土壤中7种多氯联苯. 岩矿测试, 2011, 30(1): 33-39.

[19]

周慧君, 帅琴, 黄云杰, 汤志勇, 曾梦. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞. 岩矿测试, 2017, 36(5): 474-480. doi: 10.15898/j.cnki.11-2131/td.201703010024

[20]

汪瑾彦, 汤 桦, 陈大舟, 吴 雪, 冯 洁, 吴学丽, 李 蕾. 气相色谱-质谱法同时测定河流沉积物中多环芳烃和有机氯农药. 岩矿测试, 2010, 29(3): 225-230.

计量
  • PDF下载量(24)
  • 文章访问量(856)
  • HTML全文浏览量(266)
  • 被引次数(0)
目录

Figures And Tables

固相萃取-衍生化-气相色谱-质谱联用测定不同水体中类固醇雌激素方法研究

王园园, 宋晓明, 温玉娟, MuhammadAdeel, 杨悦锁, 宋伟