【引用本文】 修凤凤, 樊勇, 李俊雨, 等. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J]. 岩矿测试, 2018, 37(5): 526-532. doi: 10.15898/j.cnki.11-2131/td.201704170061
XIU Feng-feng, FAN Yong, LI Jun-yu, et al. Determination of 18 Minor Elements in the Structural Superimposed Halo Samples from Gold Deposits by Wavelength Dispersive X-ray Fluorescence Spectrometry with Pressed-powder Pellets[J]. Rock and Mineral Analysis, 2018, 37(5): 526-532. doi: 10.15898/j.cnki.11-2131/td.201704170061

粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素

中国冶金地质总局地球物理勘查院测试中心, 河北 保定 071051

收稿日期: 2017-04-17  修回日期: 2017-12-07  接受日期: 2018-03-21

基金项目: 中国冶金地质总局地球物理勘查院构造叠加晕研究项目(1401ZKZGB00001)

作者简介: 修凤凤, 工程师, 主要从事地质实验测试研究及实验室质量管理工作。E-mail:303551135@qq.com

Determination of 18 Minor Elements in the Structural Superimposed Halo Samples from Gold Deposits by Wavelength Dispersive X-ray Fluorescence Spectrometry with Pressed-powder Pellets

Geophysical Exploration Academy of China Metallurgical Geology Bureau, Baoding 071051, China

Received Date: 2017-04-17
Revised Date: 2017-12-07
Accepted Date: 2018-03-21

摘要:金矿床型构造叠加晕样品中的砷锑铋银锡钨等金属元素含量对金矿多期次多阶段成矿具有指示意义。此类样品采集于金矿中,样品各元素含量范围大,从克吨级至百分之几,分布也不均匀。采用常规的检测方法分析时,存在元素间干扰不易消除、记忆效应严重等问题。本文建立了粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中砷锑铋等18种次量元素的定量分析方法。通过研究角度扫描图,选择了干扰少、强度高的分析线;充分混匀样品,消除了偏析效应;选用与样品基体类似的国家标准样品建立工作曲线,通过数学校正和内标法校正了谱线重叠干扰和基体效应。方法检出限为0.14~2.23 μg/g,精密度(RSD,n=12)小于4%。本方法可快速、准确地测定金矿床型构造叠加晕样品中各元素的含量。

关键词: 金矿床, 构造叠加晕样品, 粉末压片, X射线荧光光谱法

要点

(1) 波长色散X射线荧光光谱法在构造叠加晕样品分析中的应用研究很少。

(2) 研究样品角度扫描图,可以选择合适的谱线进行分析,提高分析结果的准确性。

(3) 建立的方法能快速、准确地测定金矿型构造叠加晕样品中各元素的含量。

Determination of 18 Minor Elements in the Structural Superimposed Halo Samples from Gold Deposits by Wavelength Dispersive X-ray Fluorescence Spectrometry with Pressed-powder Pellets

ABSTRACT

BACKGROUND:

Elements As, Sb, Bi, Ag, Sn, W, Mo, Cu, Pb, Zn, Co, Cr, Ni, Ti, V, Mn, Sr and Ba in structural superimposed halo samples of gold deposits were of significance to the multi-phases and multi-stage mineralization of the gold deposits. This kind of sample is collected in the gold mine. The content of each element is very different and the distribution is uneven, from the ppm level to a few percent.

OBJECTIVES:

To overcome the problems of conventional detection methods, such as difficult to eliminate inter-element interference and serious memory effects.

METHODS:

The contents of 18 elements in structural superimposed haloes of gold ore were studied by pressed-powder pellets Wavelength Dispersive XRF.

RESULTS:

By studying the angle scanning chart, the analysis line with least interference and high intensity is selected, and the segregation effect is eliminated by fully mixing the sample. The detection limits of this method are 0.14-2.23 μg/g, and the precision (RSD, n=12) is less than 4%.

CONCLUSIONS:

The method can rapidly and accurately determine the contents of all elements in structural superimposed halo samples of gold deposits.

KEY WORDS: gold deposit, the structural superimposed halo samples, pressed-powder pellets, Wavelength Dispersive X-ray Fluorescence Spectrometry

HIGHLIGHTS

(1) There is little report on the application of Wavelength Dispersive X-ray Fluorescence Spectrometry (XRF) in structural superimposed halo samples.

(2) The suitable spectral lines and accuracy of analytical results can be selected and improved through the study of sample angle scanning.

(3) The method can rapidly and accurately determine the contents of all elements in structural superimposed halo samples of gold deposits.

本文参考文献

[1]

李惠,张国义,禹斌. 金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M] . 北京: 地质出版社, 2006: 27

Li H,Zhang G Y,Yu B. Structural Superposition Halo Model and Ore Finding Effect in the Prediction of Deep Blind Ore Deposits in Gold Deposits[M] . Beijing: Geological Publishing House, 2006: 27
[2]

李惠,禹斌,李德亮. 构造叠加晕找盲矿法及找矿效果[M] . 北京: 地质出版社, 2008: 14-20.

Li H,Yu B,Li D L. Blind Ore Prospecting Method with Structural Superposition Halo and Its Ore Finding Effect[M] . Beijing: Geological Publishing House, 2008: 14-20.
[3]

李惠, 禹斌, 李德亮, 等. 构造叠加晕法预测盲矿的关键技术[J]. 物探与化探, 2014, 38(2): 189-193.

Li H, Yu B, Li D L, et al. The key technology of predicting blind ore by structural superposition halo method[J]. Geophysical and Geochemical Exploration, 2014, 38(2): 189-193.

[4]

李惠, 禹斌, 李德亮, 等. 成矿区带构造叠加晕找矿预测新方法[J]. 物探与化探, 2013, 37(2): 189-193.

Li H, Yu B, Li D L, et al. A new prognostic method using structure superimposed halo in regional metallogenic belt[J]. Geophysical and Geochemical Exploration, 2013, 37(2): 189-193.

[5]

Galina V P, Tatyana S A, Alexander I F, et al. Analytical approaches for determination of bromine in sediment core samples by X-ray fluorescence spectrometry[J].Talanta, 2016, 160: 375-380. doi: 10.1016/j.talanta.2016.07.059

[6]

吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002

Ji A. Development of X-ray fluorescence spectrometry in the 30 years[J]. Rock and Mineral Analysis, 2012, 31(3): 383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002

[7]

夏鹏超, 李明礼, 王祝, 等. 粉末压片制样波长色散X射线荧光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷硫[J]. 岩矿测试, 2012, 31(3): 468-472. doi: 10.3969/j.issn.0254-5357.2012.03.016

Xia P C, Li M L, Wang Z, et al. Determination of major and minor elements of Mo, Cu, Pb, Zn, As, Ni and S in the porphyry type lindgrenite by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2012, 31(3): 468-472. doi: 10.3969/j.issn.0254-5357.2012.03.016

[8]

刘江斌, 段九存, 党亮, 等. X射线荧光光谱法同时测定铝土矿中主次组分及3种痕量元素[J]. 理化检验(化学分册), 2011, 47(10): 1211-1216.

Liu J B, Duan J C, Dang L, et al. X-ray spectrometry determination of major, minor components and 3 trace elements in bauxites[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(10): 1211-1216.

[9]

李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光谱法测定钼矿石中9种元素[J]. 岩矿测试, 2014, 33(6): 839-843.

Li Q C, Zhao Q L. Determination of 9 elements in molybdenum ore by wavelength dispersive X-ray fluorescence spectrometry with powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 839-843.

[10]

李小莉, 张勤. 粉末压片-X射线荧光谱法测定土壤, 水系沉积物和岩石样品中15种稀土元素[J]. 治金分析, 2013, 33(7): 35-40.

Li X L, Zhang Q. Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2013, 33(7): 35-40.

[11]

郑荣华, 刘建坤. 粉末压片-X射线荧光谱法测定矿石中钨, 锡[J]. 理化检验(化学分册), 2013, 49(1): 66-68.

Zhen R H, Liu J K. Determination of tungsten and tin in ores with preparation of disc sample from its powder by pressing by X-ray fluorescence spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(1): 66-68.

[12]

段家华, 马林泽, 张李斌, 等. 压片制样-X射线荧光光谱法测定高磷钢渣组分[J]. 冶金分析, 2013, 33(5): 36-40. doi: 10.3969/j.issn.1000-7571.2013.05.008

Duan J H, Ma L Z, Zhang L B, et al. Determination of components in high-phosphorus steel slag X-ray fluorescence spectrometry with tabletting sample preparation[J].Metallurgical Analysis, 2013, 33(5): 36-40. doi: 10.3969/j.issn.1000-7571.2013.05.008

[13]

李强, 张学华. 粉末压片-X射线荧光光谱法快速分析多金属结核和富钴结壳中22种组分[J]. 冶金分析, 2014, 34(1): 28-33.

Li Q, Zhang X H. Rapid determination of twenty-two components in polymetallic nodule and cobalt-rich crusts by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2014, 34(1): 28-33.

[14]

陈静. X射线荧光光谱法测定地质样品中铌和钽的探讨[J]. 冶金分析, 2015, 35(10): 24-29.

Chen J. Discussion on the determination of niobium and tantalum in geological samples by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2015, 35(10): 24-29.

[15]

李先和, 万双, 刘子健, 等. X射线荧光光谱法测定铜精矿中10种元素[J]. 冶金分析, 2016, 36(6): 55-59.

Li X H, Wan S, Liu Z J, et al. Determination of ten elements in copper concentrate by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(6): 55-59.

[16]

唐梦奇, 黎香荣, 罗明贵, 等. X射线荧光光谱法测定锌精矿中主次量成分[J]. 冶金分析, 2012, 32(7): 55-58. doi: 10.3969/j.issn.1000-7571.2012.07.012

Tang M Q, Li X R, Luo M G, et al. Determination of major and minor components in zinc concentrates by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2012, 32(7): 55-58. doi: 10.3969/j.issn.1000-7571.2012.07.012

[17]

曾江萍, 张莉娟, 李小莉, 等. 超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J]. 冶金分析, 2015, 35(7): 37-43.

Zeng J P, Zhang L J, Li X L, et al. Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J]. Metallurgical Analysis, 2015, 35(7): 37-43.

[18]

夏传波, 姜云, 郑建业, 等. X射线荧光光谱法测定地质样品中氯的含量[J]. 理化检验(化学分册), 2017, 53(7): 775-779.

Xia C B, Jiang Y, Zheng J Y, et al. X-ray fluorescence spectrometric determination of Chlorine in Geological Samples[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(7): 775-779.

[19]

卜兆杰, 蒋春宏, 陶泽秀, 等. 粉末压片制样-X射线荧光光谱法测定稀土镁中间合金中镁锰硅钛钙铁[J]. 冶金分析, 2018, 38(3): 61-64.

Bu Z J, Jiang C H, Tao Z X, et al. Determination of magnesium, manganese, silicon, titanium, calcium, iron in rare earth-magnesium intermediate alloy by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2018, 38(3): 61-64.

[20]

朱纪夏, 李庆美. X射线荧光光谱法快速测定铁中硅锰硫磷钛[J]. 理化检验(化学分册), 2004, 40(4): 233-236.

Zhu J X, Li Q M. Fast X-ray fluorescence spectrometric determination of parathion manganese titanium in pig iron[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2004, 40(4): 233-236.

[21]

吕善胜, 徐金龙, 曲强, 等. 理论系数法和经验系数法结合相结合校正——X射线荧光光谱法测定铁矿石中14种组分[J]. 冶金分析, 2016, 36(4): 46-51.

Lü S S, Xu J L, Qu Q, et al. Determination of fourteen components in iron ore by X-ray fluorescence spectrometry with theoretical α coefficient and empirical coefficient method correction[J]. Metallurgical Analysis, 2016, 36(4): 46-51.

[22]

孙晓飞, 文孟喜, 杨丹丹, 等. 康普顿散射结合经验系数法校正X射线荧光光谱法测定石灰石和白云石中的应用[J]. 冶金分析, 2016, 36(1): 11-17.

Sun X F, Wen M X, Yang D D, et al. Application of Compton scatter and empirical coefficient correction in X-ray fluorescence spectrometric determination of limestone and dolomite[J]. Metallurgical Analysis, 2016, 36(1): 11-17.

[23]

苏梦晓, 陆安军. 电感耦合等离子体原子发射光谱法、X射线荧光光谱法和摄谱法测定地球化学样品中铜、铅、锌、镍的比较[J]. 冶金分析, 2015, 35(5): 48-53.

Su M X, Lu A J. Comparison of inductively coupled plasma atomic emission spectrometry and spectrographic method for the determination of copper, lead, zinc, and nickel in geochemical samples[J]. Metallurgical Analysis, 2015, 35(5): 48-53.

[24]

卢艳蓉, 尹明兰, 杨龙莲, 等. 碱熔融氢化物发生-原子荧光光谱法测定铁矿石中铋[J]. 冶金分析, 2014, 34(12): 57-61.

Lu Y R, Yin M L, Yang L L, et al. Determination of bismuth in iron ore by alkali fusion hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2014, 34(12): 57-61.

[25]

袁水海, 尹昌慧, 元志线, 等. 氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J]. 冶金分析, 2016, 36(3): 39-43.

Yuan S H, Yin C H, Yuan Z X, et al. Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 39-43.

相似文献(共20条)

[1]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[2]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[3]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[4]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[5]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[6]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[7]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[8]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[9]

王龙山, 刘琦, 徐海. X射线荧光光谱法测定土壤样品中碳氮硫氯等31种组分. 岩矿测试, 2007, 26(6): 490-492.

[10]

王烨, 吴建政. 泡塑分离冷原子荧光测定金矿中微量汞. 岩矿测试, 1993, (3): 238-240.

[11]

夏鹏超, 李明礼, 王祝, 李代琼, 胡亚燕. 粉末压片制样-波长色散X射线荧光光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷镍硫. 岩矿测试, 2012, 31(3): 468-472.

[12]

王志刚, 李凤全, 潘虹梅. 灰尘中主次量元素的X射线荧光光谱分析. 岩矿测试, 2008, 27(5): 383-385.

[13]

刘玉纯, 林庆文, 马玲, 梁述廷. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化. 岩矿测试, 2018, 37(6): 671-677. doi: 10.15898/j.cnki.11-2131/td.201801300014

[14]

陈静, 高志军, 陈冲科, 刘延霞, 张明炜. X射线荧光光谱法分析地质样品的应用技巧. 岩矿测试, 2015, 34(1): 91-98. doi: 10.15898/j.cnki.11-2131/td.2015.01.012

[15]

尹静, 黄睿涛. 粉末压片制样-X射线荧光光谱法测定铁矿石中锌砷锰. 岩矿测试, 2011, 30(4): 491-493.

[16]

宋江涛, 赵庆令. 粉末压片制样-波长色散X射线荧光光谱法测定卤水中的溴. 岩矿测试, 2011, 30(4): 494-496.

[17]

唐梦奇, 刘顺琼, 袁焕明, 谢毓群, 刘国文, 罗明贵. 粉末压片制样-波长色散X射线荧光光谱法测定进口铜矿石中的氟. 岩矿测试, 2013, 32(2): 254-257.

[18]

刘玉纯, 胡浩, 梁述廷. X射线荧光光谱法同时测定土壤样品中碳氮等多元素. 岩矿测试, 2004, (2): 102-108.

[19]

谌观秀, 袁欣艺. X射线荧光光谱法测定长石的化学成分. 岩矿测试, 1999, (3): 232-234.

[20]

张爱芬, 马慧侠, 李国会. X射线荧光光谱法测定铝矿石中主次痕量组分. 岩矿测试, 2005, (4): 307-310.

计量
  • PDF下载量(3)
  • 文章访问量(127)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素

修凤凤, 樊勇, 李俊雨, 朱义杰