【引用本文】 王羽, 汪丽华, 王建强, 等. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征[J]. 岩矿测试, 2017, 36(6): 563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038
WANG Yu, WANG Li-hua, WANG Jian-qiang, et al. Investigation of Organic Matter Pore Structures of Shale in Three Dimensions of Shale Using Nano-X-ray Microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038

利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征

1. 

中国科学院微观界面物理与探测重点实验室, 上海 201800

2. 

中国科学院上海应用物理研究所上海光源, 上海 201204

3. 

中国科学院地质与地球物理研究所, 北京 100029

收稿日期: 2017-03-24  修回日期: 2017-08-20  接受日期: 2017-10-20

基金项目: 中国科学院战略性先导科技专项(B类)“页岩三维成像实验技术和数据获取技术”(XDB10020102);国家杰出青年科学基金资助项目(41325016);页岩微观结构的同步辐射研究项目(12JC1410400)

作者简介: 王羽, 助理研究员, 从事同步辐射技术在地质地震领域的应用研究。E-mail:yuwang@sinap.ac.cn

通讯作者: 汪丽华, 副研究员, 从事同步辐射技术在地质考古领域的应用研究。E-mail:lhwang@sinap.ac.cn

Investigation of Organic Matter Pore Structures of Shale in Three Dimensions of Shale Using Nano-X-ray Microscopy

1. 

Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

2. 

Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

3. 

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: WANG Li-hua, lhwang@sinap.ac.cn

Received Date: 2017-03-24
Revised Date: 2017-08-20
Accepted Date: 2017-10-20

摘要:页岩纳米级孔隙的三维结构特征直接决定页岩气微观渗流机理,是完善页岩储层流动模型亟需解决的核心问题。本文以龙马溪组页岩有机孔样品(直径约7 μm)为研究对象,分别利用同步辐射纳米CT和实验室纳米CT重建有机孔三维空间结构,针对两个装置获得的孔隙结构参数进行对比研究,结果表明:①龙马溪组页岩有机孔样品呈蜂窝状,孔隙度约60%,连通性较好;孔径分布呈双峰模式,集中于60~150 nm和500~1400 nm;孔径大于500 nm的孔隙对样品的总孔隙度贡献较大。②同步辐射纳米CT与实验室纳米CT结果相较,孔隙度和孔隙总数两参数基本一致,喉道总数和喉道半径偏差较大;孔径分布和配位数分布规律虽然类似,但具体数值存在明显差异,值得进一步深入比较分析和研究。③纳米CT方法在页岩纳米孔隙三维结构表征方面存在阈值划分难度大与扫描视场过小的问题,可从切片重构算法、三维数据处理、表征单元体三方面进行改进。

关键词: 纳米透射X射线显微成像, 三维重构, 有机质孔隙, 龙马溪组页岩

Investigation of Organic Matter Pore Structures of Shale in Three Dimensions of Shale Using Nano-X-ray Microscopy

KEY WORDS: nano-X-ray Microscopy, three dimensional reconstruction, organic matter pore, Longmaxi shale

Highlights

· The three dimensional pore structure of shale was comparatively investigated using nano-scale synchrontron radiation CT and laboratory CT.

· Synchrontron radiation CT and laboratory CT show a similar law of pore size distribution but obvious deviations considering the exact figures.

· Problems of threshold partition and small scan view can be improved by reconstruction algorithm, 3D data analysis and representative elementary volume.

本文参考文献

[1]

Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types for matrix-related mud pores[J].AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061

[2]

Pommer M, Milliken K. Pore types and pore-size distri-butions across thermal maturity, Eagle Ford formation, Southern Texas[J].AAPG Bulletin, 2015, 99(9): 1713-1744. doi: 10.1306/03051514151

[3]

邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864.

Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.

[4]

张东晓, 杨婷云, 吴天昊, 等. 页岩气开发机理和关键问题[J]. 科学通报, 2016, 61(1): 62-71.

Zhang D X, Yang T Y, Wu T H, et al. Recovery mechanisms and key issues in shale gas development[J]. Chinese Science Bulletin, 2016, 61(1): 62-71.

[5]

徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631. doi: 10.11867/j.issn.1001-8166.2014.05.0624

Xu Z X, Guo S B. Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J].Advances in Earth Science, 2014, 29(5): 624-631. doi: 10.11867/j.issn.1001-8166.2014.05.0624

[6]

吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176. doi: 10.11698/PED.2015.02.05

Wu S T, Zhu R K, Cui J G, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(2): 167-176. doi: 10.11698/PED.2015.02.05

[7]

马勇, 钟宁宁, 程礼军, 等. 渝东南两套富有机质页岩的孔隙结构特征——来自FIB-SEM的新启示[J]. 石油实验地质, 2015, 37(1): 109-116. doi: 10.11781/sysydz201501109

Ma Y, Zhong N N, Cheng L J, et al. Pore structure of two organic-rich shales in Southeastern Chongqing area:Insight from focused ion beam scanning electron microscope (FIB-SEM)[J].Petroleum Geology & Experiment, 2015, 37(1): 109-116. doi: 10.11781/sysydz201501109

[8]

黄家国, 许开明, 郭少斌, 等. 基于SEM、NMR和X-CT的页岩储层孔隙结构综合研究[J]. 现代地质, 2015, 29(1): 198-205.

Huang J G, Xu K M, Guo S B, et al. Comprehensive study on pore structures of shale reservoirs based on SEM, NMR and X-CT[J]. Geoscience, 2015, 29(1): 198-205.

[9]

Curtis M E, Sondergeld C H, Ambrose R J, et al. Micro-structural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J].AAPG Bulletin, 2012, 96(4): 665-677. doi: 10.1306/08151110188

[10]

Wang Y, Pu J, Wang L, et al. Characterization of typical 3D pore networks of Jiulaodong Formation shale using nano-transmission X-ray microscopy[J].Fuel, 2016, 170: 84-91. doi: 10.1016/j.fuel.2015.11.086

[11]

Misch D, Mendez-Martin F, Hawranek G, et al. SEM and FIB-SEM investigations on potential gas shales in the Dniepr-Donets Basin (Ukraine):Pore space evolution in organic matter during thermal maturation[J].IOP Conference Series:Materials Science and Engineering, 2016, 109(012010). doi: 10.1088/1757-899X/109/1/012010

[12]

Ma L, Taylor K G, Lee P D, et al. Novel 3D centimetre-to nano-scale quantification of an organic-rich mudstone:The carboniferous Bowland shale, Northern England[J].Marine and Petroleum Geology, 2016, 72: 193-205. doi: 10.1016/j.marpetgeo.2016.02.008

[13]

Jiang F, Chen J, Xu Z, et al. Organic matter pore charac-terization in Lacustrine shales with variable maturity using nanometer-scale resolution X-ray computed tomography[J]. Energy & Fuels, 2017, 31(3): 2669-2680.

[14]

Zhang H, Zhu Y M, Wang Y, et al. Comparison of org-anic matter occurrence and organic nanopore structure within marine and terrestrial shale[J].Journal of Natural Gas Science and Engineering, 2016, 32: 356-363. doi: 10.1016/j.jngse.2016.04.040

[15]

Cao G, Lin M, Jiang W, et al. A 3D coupled model of organic matter and inorganic matrix for calculating the permeability of shale[J].Fuel, 2017, 204: 129-143. doi: 10.1016/j.fuel.2017.05.052

[16]

Loucks R G, Reed R M. Scanning-electron-microscope petrographic evidence for distinguishing organic matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. Gulf Coast Association of Geological Societies Journal, 2014, 3: 51-60.

[17]

Ko L T, Loucks R G, Ruppel S C, et al. Origin and cha-racterization of Eagle Ford pore networks in the South Texas Upper Cretaceous Shelf[J].AAPG Bulletin, 2017, 101(3): 387-418. doi: 10.1306/08051616035

[18]

王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(3): 278-285.

Wang Y, Jin C, Wang L H, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis, 2015, 34(3): 278-285.

[19]

王羽, 金婵, 姜政, 等. 渝东五峰组-龙马溪组页岩矿物成分与孔隙特征分析[J]. 矿物学报, 2016, 36(4): 555-562.

Wang Y, Jin C, Jiang Z, et al. Mineral composition and microscopic pore characteristics of Wufeng-Longmaxi Formation shale in Eastern Chongqing City, China[J]. Acta Geologica Sinica, 2016, 36(4): 555-562.

[20]

Klaver J, Desbois G, Littke R, et al. BIB-SEM characteri-zation of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier shales[J].Marine and Petroleum Geology, 2015, 59: 451-466. doi: 10.1016/j.marpetgeo.2014.09.020

[21]

Klaver J, Desbois G, Littke R, et al. BIB-SEM pore char-acterization of mature and post mature Posidonia shale samples from the Hils area, Germany[J].International Journal of Coal Geology, 2016, 158: 78-89. doi: 10.1016/j.coal.2016.03.003

[22]

Zou C, Du J, Xu C, et al. Formation, distribution, resou-rce potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J].Petroleum Exploration and Development, 2014, 41(3): 306-325. doi: 10.1016/S1876-3804(14)60036-7

[23]

Hu H, Hao F, Lin J, et al. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China[J].International Journal of Coal Geology, 2017, 173: 40-50. doi: 10.1016/j.coal.2017.02.004

[24]

Michael U, Dennis D, Jeffrey F, et al. Sample dimensions influence strength and crystal plasticity[J].Science, 2004, 305(5686): 986-989. doi: 10.1126/science.1098993

[25]

Song Y F, Chang C H, Liu C Y, et al. X-ray beamlines for structural studies at the NSRRC superconducting wavelength shifter[J].Journal of Synchrotron Radiation, 2007, 14(4): 320-325. doi: 10.1107/S0909049507021516

[26]

Kak A C, Slaney M, Wang G, et al. Principles of computerized tomographic imaging[J].Medical Physics, 2002, 29(1): 105-108. doi: 10.1118/1.1429627

[27]

Oh W, Lindquist W B. Image thresholding by indicator Kriging[J].Ieee Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(7): 590-602. doi: 10.1109/34.777370

[28]

王羽, 金婵, 汪丽华, 等. 基于SEM图像灰度水平的页岩孔隙分割方法研究[J]. 岩矿测试, 2016, 35(6): 35-41.

Wang Y, Jin C, Wang L H, et al. Pore segmentation methods based on gray scale of SEM images[J]. Rock and Mineral Analysis, 2016, 35(6): 35-41.

[29]

Slatt R M, O'brien N R. Pore types in the Barnett and Woodford gas shales:Contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin, 2011, 95(12): 2017-2030. doi: 10.1306/03301110145

[30]

Rabbani A, Baychev T G, Ayatollahi S, et al. Evolution of pore-scale morphology of oil shale during pyrolysis:A quantitative analysis[J].Transport in Porous Media, 2017, 119(1): 143-162. doi: 10.1007/s11242-017-0877-1

[31]

Chen Y Y, Mastalerz M, Schimmelmann A, et al. heterogeneity of shale documented by micro-FTIR and image analysis[J].Journal of Microscopy, 2014, 256(3): 177-189. doi: 10.1111/jmi.12169

[32]

王香增, 张丽霞, 高潮, 等. 鄂尔多斯盆地下寺湾地区延长组页岩气储层非均质性特征[J]. 地学前缘, 2016, 23(1): 134-145.

Wang X Z, Zhang L X, Gao C, et al. The heterogeneity of lacustrine shale gas reservoir in Yanchang Formation, Xiasiwan area, Ordos Basin[J]. Earth Science Frontiers, 2016, 23(1): 134-145.

[33]

Wang Y, Luo S, Wang L, et al. Synchrotron radiation-based L1-norm regularization on micro-CT imaging in shale structure analysis[J]. Journal of Inverse and Ill-posed Problems, 2017, 25(4): 483-498.

[34]

Chen R, Dreossi D, Mancini L, et al. PITRE:Software for phase-sensitive X-ray image processing and tomography reconstruction[J].Journal of Synchrotron Radiation, 2012, 19(5): 836-845. doi: 10.1107/S0909049512029731

[35]

Gitman I M, Askes H, Sluys L J, et al. Representative volume:Existence and size determination[J].Engineering Fracture Mechanics, 2007, 74(16): 2518-2534. doi: 10.1016/j.engfracmech.2006.12.021

相似文献(共18条)

[1]

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构. 岩矿测试, 2018, 37(3): 235-243. doi: 10.15898/j.cnki.11-2131/td.201612210188

[2]

白名岗, 夏响华, 张聪, 孟凡洋, 杨玉茹, 张春贺, 代峰, 熊杰, 王向华, 于伟欣. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用. 岩矿测试, 2018, 37(3): 225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

[3]

邱灵佳, 黄国林, 帅琴, 苏玉. 灼烧法中有机质与总有机碳换算关系的重建及其在页岩分析中的应用. 岩矿测试, 2015, 34(2): 218-223. doi: 10.15898/j.cnki.11-2131/td.2015.02.011

[4]

张茜, 余谦, 王剑, 肖渊甫, 程锦翔, 赵安坤, 张彬. 应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境. 岩矿测试, 2018, 37(2): 217-224. doi: 10.15898/j.cnki.11-2131/td.201705090078

[5]

李志雄, 韩奕彤, 徐永强, 杨洋, 陈家玮. 动态光散射技术原位表征天然有机质存在下纳米零价铁的团聚效应. 岩矿测试, 2016, 35(6): 634-641. doi: 10.15898/j.cnki.11-2131/td.2016.06.010

[6]

胡俊栋, 刘崴, 沈亚婷, 路国慧. 天然有机质存在条件下的纳米颗粒与重金属协同行为研究. 岩矿测试, 2013, 32(5): 669-680.

[7]

荣庆丰, 赵雅云, 周志恒. 三维旋转式自动进样器的研制. 岩矿测试, 2004, (4): 291-294.

[8]

熊艳, 钟夏阳, 陈金保. 消解炉消解-氧化还原滴定法测定土壤样品中有机质. 岩矿测试, 2006, 25(2): 191-192.

[9]

龚迎莉, 孙玮琳, 汪双清, 沈斌. 生油岩中有机质加速溶剂萃取和索氏萃取方法对比. 岩矿测试, 2009, 28(5): 416-422.

[10]

张兴超, 刘超, 黄艺, 黄方, 于慧敏. 干法灰化处理对含有机质土壤样品铜同位素测量的影响. 岩矿测试, 2018, 37(4): 347-355. doi: 10.15898/j.cnki.11-2131/td.201803290033

[11]

王羽, 金婵, 汪丽华, 王建强, 姜政, 王彦飞, 普洁. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征. 岩矿测试, 2015, 34(3): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003

[12]

龙梅 裴世桥. 近红外反射光谱学在岩石矿物研究中的应用Ⅱ.快速测定地质样品中有机质. 岩矿测试, 2004, (1): 6-10.

[13]

江泓. 用稳健方差分析评估地球化学调查土壤中有机质的采样质量和分析质量. 岩矿测试, 2004, (1): 52-55.

[14]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[15]

何廷鹏, 栾进华, 胡科, 李甜, 杨柳, 张跃磊. 渝东北城口地区Y1井页岩有机地球化学特征及勘探前景. 岩矿测试, 2018, 37(1): 87-95. doi: 10.15898/j.cnki.11-2131/td.201703230037

[16]

杨常青, 张双双, 吴楠, 侯艳娜, 徐彩春, 徐志彬. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究. 岩矿测试, 2016, 35(5): 481-487. doi: 10.15898/j.cnki.11-2131/td.2016.05.006

[17]

时磊, 孙艳艳, 吕爱娟, 蔡小虎, 沈小明, 沈加林. 长三角部分地区土壤中22种有机氯农药的分布特征. 岩矿测试, 2016, 35(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2016.01.013

[18]

沈亚婷. 土壤溶解性有机质对植物吸收-输送-贮存重金属的影响研究现状与进展. 岩矿测试, 2012, 31(4): 571-575.

计量
  • PDF下载量(39)
  • 文章访问量(639)
  • HTML全文浏览量(216)
  • 被引次数(0)
目录

Figures And Tables

利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞