【引用本文】 胡雪原, 郭瑞清, 努尔喀纳提·马达依普, 等. 塔里木南缘布雅花岗岩和暗色包体的锆石U-Pb年代学及地球化学特征[J]. 岩矿测试, 2017, 36(5): 538-550. doi: 10.15898/j.cnki.11-2131/td.201703190035
HU Xue-yuan, GUO Rui-qing, NUER Kanati·Madayipu , et al. Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang[J]. Rock and Mineral Analysis, 2017, 36(5): 538-550. doi: 10.15898/j.cnki.11-2131/td.201703190035

塔里木南缘布雅花岗岩和暗色包体的锆石U-Pb年代学及地球化学特征

新疆大学地质与矿业工程学院, 新疆 乌鲁木齐 830047

收稿日期: 2017-03-19  修回日期: 2017-06-15  接受日期: 2017-07-20

基金项目: 中国地质调查局地质调查项目“中国主要陆块晚前寒武纪以来裂解重组过程的再造及其对成矿作用的制约”(1212011121064)专题“新疆塔里木南缘南华纪至三叠纪聚散过程研究”(212-61717)

作者简介: 胡雪原, 硕士研究生, 矿物学、岩石学、矿床学专业。E-mail:1553767881@qq.com。

通讯作者: 郭瑞清, 副教授, 硕士生导师, 从事岩石学及大地构造科研和教学工作。E-mail:guoruiqing8888@163.com

Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang

College of Geology and Mining Engineering, Xinjiang University, Urumqi 830047, China

Corresponding author: GUO Rui-qing, guoruiqing8888@163.com

Received Date: 2017-03-19
Revised Date: 2017-06-15
Accepted Date: 2017-07-20

摘要:塔里木西南缘铁克里克地区广泛发育早古生代中酸性侵入岩,本文对其中布雅岩体及其暗色包体进行系统的岩石学、年代学及岩石地球化学研究,确定了岩石成因及其构造属性。LA-MC-ICP-MS锆石U-Pb年代学研究表明,寄主石英二长闪长岩结晶年龄为432.6±2.5 Ma(MSWD=1.5),暗色包体结晶年龄为432.4±6.4 Ma(MSWD=0.031),二者形成时代相同,均为志留纪早期岩浆活动的产物。地球化学特征表明,布雅暗色包体应来源于地幔的部分熔融,而寄主岩石岩浆具有壳源岩浆的性质并经历了幔源岩浆不均匀的混合。野外及岩相学特征均显示暗色包体为铁镁质岩浆注入长英质岩浆快速冷凝形成的,是幔源岩浆底侵下地壳形成的岩浆混合作用的产物。它们是塔里木南缘早古生代碰撞造山作用晚期的岩浆记录。

关键词: 铁克里克, 布雅岩体, LA-MC-ICP-MS锆石U-Pb年代学, 岩浆混合

Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang

KEY WORDS: Tiekelike tectonic belt, Buya pluton, LA-MC-ICP-MS zircon U-Pb dating, magma mixing

Highlights

· The Buya quartz monzobiorite was formed at 432.6±2.5 Ma, and its mafic microgranular enclaves (MMEs) were formed at 432.4±6.4 Ma.

· Mafic microgranular enclaves (MMEs) are globules of a more mafic magma that was injected into and mingled with the host felsic magma.

· They are the Early Paleozoic collision orogenesis of the late magmatic activity records from the southern margin of Tarim.

本文参考文献

[1]

Elburg M A. Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan fold belt, Australia[J].Journal of Petrology, 1996, 37(6): 1385-1408. doi: 10.1093/petrology/37.6.1385

[2]

Yang J H, Wu F Y, Chung S L, et al. Multiple sources for the origin of granites:Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves Northeast China[J].Geochimica et Cosmochimica Acta, 2004, 68: 4469-4483. doi: 10.1016/j.gca.2004.04.015

[3]

Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf-isotope analysis of zircons[J]. Contributions to Mineralogy and Petrology, 2007, 153: 177-190.

[4]

Cheng Y, Spandler C, Mao J, et al. Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China:A case of two-stage mixing of crust-and mantle-derived magmas[J].Contributions to Mineralogy and Petrology, 2012, 164(4): 659-676. doi: 10.1007/s00410-012-0766-0

[5]

Flood R H, Shaw S E. Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia:Pressure quench cumulates[J]. Lithos, 2014, 198-199(3): 92-102.

[6]

Clemens J D, Elburg M A. Comment-origin of enclaves in S-type granites of the Lachlan fold belt[J]. Lithos, 2013, 175-176(5): 351-352.

[7]

Wyborn D. Reply-origin of enclaves in S-type granites of the Lachlan fold belt[J]. Lithos, 2013, 154(6): 353-354.

[8]

Shellnutt J G, Jahn B M, Dostal J, et al. Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China[J].Lithos, 2010, 119(1-2): 34-46. doi: 10.1016/j.lithos.2010.07.011

[9]

Niu Y, Zhao Z, Zhu D C, et al. Continental collision zones are primary sites for net continental crust growth-A testable hypothesis[J]. Earth-Science Reviews, 2013, 127(2): 96-110.

[10]

Huang H, Niu Y, Nowell G, et al. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, Northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 2014, 370(4): 1-18.

[11]

Chen S, Niu Y, Sun W, et al. On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids:Evidence from the Baojishan pluton in the North Qilian Orogen, China[J].Mineralogy and Petrology, 2015, 109(5): 577-596. doi: 10.1007/s00710-015-0383-5

[12]

Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin and relations with the hosts[J]. Lithos, 2005, 80(1): 155-177.

[13]

Kaygusuz A, Aydinakir E. Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey:Evidence of magma mixing, mingling and chemical equilibration[J].Chemie Der Erde-Geochemistry, 2009, 69(3): 247-277. doi: 10.1016/j.chemer.2008.08.002

[14]

Kocak K, Zedef V, Kansun G, et al. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central Southern Turkey:Evidence from mafic microgranular enclaves[J]. Mineralogy and Petrology, 2011, 103(1): 149-167.

[15]

Perugini D, Poli G. The mixing of magmas in plutonic and volcanic environments:Analogies and differences[J]. Lithos, 2012, 153(8): 261-277.

[16]

Xiong F H, Ma C Q, Zhang J Y, et al. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J]. Mineralogy and Petrology, 2012, 104(3): 211-224.

[17]

Dan W, Wang Q, Wang X C, et al. Overlapping Sr-Nd-Hf-O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China:Evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces[J].Lithos, 2015, 230: 133-145. doi: 10.1016/j.lithos.2015.05.016

[18]

Chen B, Chen Z C, Jahn B M, et al. Origin of mafic enclaves from the Taihang Mesozoic orogen, North China craton[J].Lithos, 2009, 110(1-4): 343-358. doi: 10.1016/j.lithos.2009.01.015

[19]

Zhao K D, Jiang S Y, Yang S Y, et al. Mineral chemistry, Trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholiths in the Shi-Hang zone, South China[J].Gondwana Research, 2012, 22(1): 310-324. doi: 10.1016/j.gr.2011.09.010

[20]

Xia R, Wang C, Min Q, et al. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys[J]. Lithos, 2015, 234-235(3): 47-60.

[21]

Zeng R, Lai J, Mao X, et al. Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China:Constraints on their petrogenesis, source characteristics and tectonic implication[J].Journal of Asian Earth Sciences, 2016, 121: 20-33. doi: 10.1016/j.jseaes.2016.02.009

[22]

Zheng Y F, Chen Y X, Dai L Q, et al. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J].Science China Earth Sciences, 2015, 58(7): 1045-1069. doi: 10.1007/s11430-015-5097-3

[23]

陈国超, 裴先治, 李瑞保, 等. 东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据[J]. 地学前缘, 2016, 23(4): 226-240.

Chen G C, Pei X Z, Li R B, et al. Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen:Evidence from mafic microgranular enclaves (MMEs)[J]. Earth Science Frontiers, 2016, 23(4): 226-240.

[24]

李玮, 高卫, 刘淑琴, 等. 塔里木西南缘和田布雅花岗岩锆石SHRIMP U-Pb年龄及地质意义[J]. 新疆地质, 2007, 25(3): 237-242.

Li W, Gao W, Liu S Q, et al. Zircon SHRIMP U-Pb dating of Buya granite and its geological significance discuss from the Southwest Tarim Basin, Xinjiang[J]. Xinjiang Geology, 2007, 25(3): 237-242.

[25]

Ye H M, Li X H, Li Z X, et al. Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau:Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt[J].Gondwana Research, 2008, 13(1): 126-138. doi: 10.1016/j.gr.2007.08.005

[26]

陈博, 秦克章, 唐冬梅, 等. 新疆磁海铁矿区镁铁质岩及正长岩锆石U-Pb年代学、岩石地球化学特征:对成岩、成矿作用的制约[J]. 岩石学报, 2015, 31(8): 2156-2174.

Chen B, Qin K Z, Tang D M, et al. Lithological, chronological and geochemical characteristics of Cihai iron deposit, Eastern Xinjiang:Constraints on genesis of mafic-ultramafic and syenite intrusions and mineralization[J]. Acta Petrologica Sinica, 2015, 31(8): 2156-2174.

[27]

崔军文, 郭宪璞, 丁孝忠, 等. 西昆仑-塔里木盆地盆-山结合带的中、新生代变形构造及其动力学[J]. 地学前缘, 2006, 13(4): 103-118.

Cui J W, Guo X P, Ding X Z, et al. Mesozoic-cenozoic deformation structures and their dynamics in the basin-range junction belt of the West Kunlun-Tarim basin[J]. Earth Science Frontiers, 2006, 13(4): 103-118.

[28]

Zhang C L, Ye X T, Zou H B, et al. Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China:New evidence from field observations, detrital zircon U-Pb ages and Hf isotope compositions[J].Precambrian Research, 2016, 280: 31-45. doi: 10.1016/j.precamres.2016.04.011

[29]

Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/ggr.2004.28.issue-3

[30]

吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

Wu Y B, Zheng Y F. Study on the origin mineralogy of zircon and its restriction to U-Pb age[J].Chinese Science Bulletin, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

[31]

Siebe L, Blaha U, Chen F, et al. Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif[J].International Journal of Earth Sciences, 2005, 94(1): 8-23. doi: 10.1007/s00531-004-0445-0

[32]

高晓峰, 校培喜, 康磊, 等. 西昆仑大同西岩体成因:矿物学、地球化学和锆石U-Pb年代学制约[J]. 岩石学报, 2013, 29(9): 3065-3079.

Gao X F, Xiao P X, Kang L, et al. Origin of Datongxi plutonin the West Kunlun orogen:Constraints from mineralogy, elemental geochemistry and zircon U-Pb age[J]. Acta Petrologica Sinica, 2013, 29(9): 3065-3079.

[33]

Liu Z, Jiang Y H, Jia R Y, et al. Origin of Middle Cambrian and Late Silurian potassic granitoids from the Western Kunlun orogen, Northwest China:A magmatic response to the Proto-Tethys evolution[J].Mineralogy and Petrology, 2014, 108(1): 91-110. doi: 10.1007/s00710-013-0288-0

[34]

Dahlquist J A. Mafic microgranular enclaves:Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J].Journal of South American Earth Sciences, 2002, 15(6): 643-655. doi: 10.1016/S0895-9811(02)00112-8

[35]

Baxter S, Fecly M. Magma mixing mingling textures in granitoids:Examples from the Galway granite, Conncmara, Ircland[J].Mineralogy and Petrology, 2002, 76: 63-74. doi: 10.1007/s007100200032

[36]

Grogan S E, Reavy R J. Disequilibrium textures in the Leinster granite complex.SE Ireland:Evidence for acid-acid magma mixing[J].Mineralogical Magazine, 2002, 66(6): 929-939. doi: 10.1180/0026461026660068

[37]

邹涛, 王玉往, 王京彬, 等. 内蒙古敖仑花斑岩钼铜矿含矿斑岩的岩浆混合特征及其地质意义[J]. 吉林大学学报(地球科学版), 2012, 42(Supplement): 171-187.

Zou T, Wang Y W, Wang J B, et al. Magma mixing characteristics and geological significance of host porphyry from the Aolunhua Mo-Cu deposit, Inner Mongolia[J]. Journal of Jilin University(Earth Science), 2012, 42(Supplement): 171-187.

[38]

张传林, 于海锋, 沈家林, 等. 西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体[J]. 地质论评, 2004, 50(6): 639-643.

Zhang C L, Yu H F, Shen J L, et al. Zircon SHRIMP age determination of the Giant-crystal gabbro and Basaltin Kǘ da, West Kunlun:Dismembering of the Kǘ da Ophiolite[J]. Geological Review, 2004, 50(6): 639-643.

[39]

李天福, 张建新. 西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J]. 岩石学报, 2014, 30(8): 2393-2401.

Li T F, Zhang J X. Zircon LA-ICP-MS U-Pb ages of websterite and basalt in Kudi ophiolite and the implication, West Kunlun[J]. Acta Petrologica Sinica, 2014, 30(8): 2393-2401.

[40]

魏国齐, 贾承造, 李本亮, 等. 塔里木盆地南缘志留-泥盆纪周缘前陆盆地[J]. 科学通报, 2002, 47(Supplement): 45-48.

Wei G Q, Jia C Z, Li B L, et al. Silurian to Devonian foreland basin in the south edge of Tarim Basin[J]. Chinese Science Bulletin, 2002, 47(Supplement): 45-48.

[41]

李丕龙,冯建辉,樊太亮. 塔里木盆地构造沉积与成藏[M] . 北京: 地质出版社, 2010: 4-43.

Li P L,Feng J H,Fan T L. Tectonics, deposits and hydrocarbon accumulation in Tarim Basin[M] . Beijing: Geological Publishing House, 2010: 4-43.
[42]

李曰俊, 孙龙德, 杨海军, 等. 塔里木盆地晚志留世-石炭纪伸展构造的发现及其地质意义[J]. 地质科学, 2014, 49(1): 30-48.

Li Y J, Sun L D, Yang H J, et al. New discovery of Late Silurian-Carboniferous extensional structure in Tarim Basin and its geological significance[J]. Chinese Journal of Geology, 2014, 49(1): 30-48.

[43]

杨海军, 李曰俊, 李勇, 等. 塔里木盆地南部玛东早古生代褶皱-冲断带[J]. 岩石学报, 2016, 32(3): 815-824.

Yang H J, Li Y J, Li Y, et al. Madong Early Paleozoic fold-thrust belt in the Southern Tarim Basin[J]. Acta Petrologica Sinica, 2016, 32(3): 815-824.

相似文献(共19条)

[1]

曾乐, 陈郑辉, 孙丰月, 王家欢, 孙颖超, 陈振宇. 赣南珠兰埠岩体锆石U-Pb年代学研究及其含矿性评价. 岩矿测试, 2016, 35(2): 199-207. doi: 10.15898/j.cnki.11-2131/td.2016.02.013

[2]

田泽瑾, 陈振宇, 王登红, 陈郑辉, 黄凡, 赵正, 侯可军. 赣南桃山复式岩体的锆石U-Pb年代学及其产铀性探讨. 岩矿测试, 2014, 33(1): 133-141.

[3]

王永磊, 陈振宇, 陈郑辉, 侯可军, 赵正, 许建祥, 张家菁, 曾载淋. 赣南—湘东湖南洞岩体的锆石U-Pb年代学研究及其对加里东构造背景的意义. 岩矿测试, 2012, 31(3): 525-529.

[4]

余明刚, 赵希林, 钱迈平, 段政, 张雪辉, 万浩章, 肖茂章, 孙建东. 江西冷水坑火山-侵入杂岩LA-ICP-MS锆石U-Pb年龄及地质意义. 岩矿测试, 2015, 34(1): 138-149. doi: 10.15898/j.cnki.11-2131/td.2015.01.018

[5]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[6]

陈芳, 杜建国, 万秋, 邱军强, 汤金来. 北淮阳东段徐家湾岩体地质和地球化学特征及LA-ICP-MS锆石U-Pb年龄. 岩矿测试, 2016, 35(3): 329-338. doi: 10.15898/j.cnki.11-2131/td.2016.03.017

[7]

谢奋全, 王黎栋, 李琦, 石朝霞, 陈学兵, 韦岸. 阿拉善宗乃山岩体东南缘花岗岩LA-ICP-MS锆石U-Pb年龄与地球化学特征. 岩矿测试, 2015, 34(3): 375-382. doi: 10.15898/j.cnki.11-2131/td.2015.03.019

[8]

侯可军, 陈振宇, 王登红, 陈郑辉, 赵正. 赣南兴国杨村岩体锆石U-Pb年龄测定及其地质意义. 岩矿测试, 2012, 31(3): 549-553.

[9]

郑国栋, 李建康, 陈振宇, 陈郑辉, 侯可军, 赵芝. 赣南吉埠黄沙岩体的锆石铀-铅年代学研究及其地质意义. 岩矿测试, 2012, 31(4): 711-716.

[10]

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

[11]

孙艳, 高允, 王登红, 代鸿章, 顾文帅, 李建, 张丽红. 重庆铜梁地区“绿豆岩”中碎屑锆石U-Pb年龄及其地质意义. 岩矿测试, 2017, 36(6): 649-658. doi: 10.15898/j.cnki.11-2131/td.201702220022

[12]

王登红, 秦燕, 陈振宇, 侯可军. 赣南部分岩体的锆石铀-铅同位素年代学研究及其对成岩成矿机制的再认识. 岩矿测试, 2012, 31(4): 699-704.

[13]

于扬, 陈振宇, 陈郑辉, 侯可军, 赵正, 许建祥, 张家菁, 曾载淋. 赣南燕山期水头岩体的锆石铀-铅年代学研究及其含矿性评价. 岩矿测试, 2012, 31(4): 736-744.

[14]

王家松, 许雅雯, 彭丽娜, 李国占. 应用激光拉曼光谱研究锆石LA-ICP-MS U-Pb定年中的α通量基体效应. 岩矿测试, 2016, 35(5): 458-467. doi: 10.15898/j.cnki.11-2131/td.2016.05.003

[15]

赵泽霖, 李俊建, 党智财, 付超, 唐文龙, 王守光, 刘利双, 赵丽君. 内蒙古黄花滩铜镍矿区辉长岩LA-ICP-MS锆石U-Pb定年及地球化学特征. 岩矿测试, 2016, 35(2): 208-216. doi: 10.15898/j.cnki.11-2131/td.2016.02.014

[16]

王先广, 刘战庆, 刘善宝, 王成辉, 刘建光, 万浩章, 陈国华, 张树德, 刘小林. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究. 岩矿测试, 2015, 34(5): 592-599. doi: 10.15898/j.cnki.11-2131/td.2015.05.016

[17]

万浩章, 刘战庆, 刘善宝, 陈毓川, 王成辉, 陈国华, 梁力杰, 李赛赛, 张树德, 刘小林. 赣东北朱溪铜钨矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义. 岩矿测试, 2015, 34(4): 494-502. doi: 10.15898/j.cnki.11-2131/td.2015.04.019

[18]

赵希林, 余明刚, 姜杨, 李亚楠, 靳国栋, 陈志洪, 邢光福. LA-ICP-MS锆石U-Pb同位素定年:对闽北地区稻香组形成时代的制约. 岩矿测试, 2014, 33(6): 892-899.

[19]

刘战庆, 刘善宝, 陈毓川, 王成辉, 万浩章, 陈国华, 李赛赛, 梁力杰. 江西朱溪铜钨矿区煌斑岩LA-ICP-MS锆石U-Pb同位素定年及地质意义. 岩矿测试, 2014, 33(5): 758-766.

计量
  • PDF下载量(19)
  • 文章访问量(908)
  • HTML全文浏览量(255)
  • 被引次数(0)
目录

Figures And Tables

塔里木南缘布雅花岗岩和暗色包体的锆石U-Pb年代学及地球化学特征

胡雪原, 郭瑞清, 努尔喀纳提·马达依普, 郭羽, 邹明煜, 吕彪, 魏震