【引用本文】 周慧君, 帅琴, 黄云杰, 等. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞[J]. 岩矿测试, 2017, 36(5): 474-480. doi: 10.15898/j.cnki.11-2131/td.201703010024
ZHOU Hui-jun, SHUAI Qin, HUANG Yun-jie, et al. On-line Determination of Hg (Ⅱ) in Geological Samples by AFS after Solid Phase Extraction Using Dithizone-modified Graphene Oxide/Chitosan Composite Microspheres[J]. Rock and Mineral Analysis, 2017, 36(5): 474-480. doi: 10.15898/j.cnki.11-2131/td.201703010024

双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞

1. 

中国地质大学(武汉)材料与化学学院, 湖北 武汉 430074

2. 

江西省地质矿产勘查开发局赣西北大队, 江西 九江 332000

收稿日期: 2017-03-01  修回日期: 2017-05-09  接受日期: 2017-06-02

基金项目: 中国地质调查局地质调查项目(12120113014300);国土资源公益性行业专项项目(201211003)

作者简介: 周慧君, 硕士研究生, 化学工程与技术专业。E-mail:867166585@qq.com。

通讯作者: 帅琴, 教授, 主要从事原子光谱分析、色谱分析及其联用技术研究。E-mail:shuaiqin@cug.edu.cn

On-line Determination of Hg (Ⅱ) in Geological Samples by AFS after Solid Phase Extraction Using Dithizone-modified Graphene Oxide/Chitosan Composite Microspheres

1. 

Faculty of Material Science and Chemistry, China University of Geosciences(Wuhan), Wuhan 430074, China

2. 

Northwestern Geological Brigade of Jiangxi Geology & Mineral Resources Development Bureau, Jiujiang 332000, China

Corresponding author: SHUAI Qin, shuaiqin@cug.edu.cn

Received Date: 2017-03-01
Revised Date: 2017-05-09
Accepted Date: 2017-06-02

摘要:汞可以指示矿床或矿化存在,是一种重要的地质过程示踪元素,因此汞的测定是十分重要的。由于汞在地质矿床中丰度较低,直接测定存在困难,需要进行预分离富集处理。目前采用的分离富集手段大多数是离线,自动化程度较低。本文将合成的双硫腙改性氧化石墨烯/壳聚糖复合微球制成固相萃取小柱,考察了溶液pH、吸附剂种类和体积对汞的吸附效果的影响,优化了固相萃取在线采样/洗脱时间和速率对汞的吸附/洗脱效果的影响,建立了固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞的分析方法。结果表明:溶液pH=3.0时,以5 mL/min的采样速率进样5 min,汞的吸附率大于90%;用20 g/L硫脲-1.0 mol/L硝酸混合溶液作洗脱液,以1 mL/min的洗脱速度洗脱1 min,洗脱率大于95%。汞含量在0.050~5.0 μg/L范围内线性关系良好,富集因子为22,检出限为0.0019 μg/L。采用本方法测定了土壤和沉积物国家标准物质样品,Hg的测定值与参考值的相对误差小于±13%。与离线分析相比,本方法具有灵敏度高、操作简单快速等特点。

关键词: 复合微球, 固相萃取, 在线富集, 原子荧光光谱法, 地质样品,

On-line Determination of Hg (Ⅱ) in Geological Samples by AFS after Solid Phase Extraction Using Dithizone-modified Graphene Oxide/Chitosan Composite Microspheres

KEY WORDS: composite microspheres, solid phase extraction, on-line enrichment, Atomic Fluorescence Spectrometry, geological samples, Hg

Highlights

· Uniform microspheres were prepared by dithizone-modified graphene oxide and chitosan composites.

· These microspheres were fabricated in a column for extracting mercury.

· Both the absorption and elution rate were higher than 90%.

· An analysis method combining on-line solid phase extraction with Atomic Fluorescence Spectrometry was established for the determination of trace mercury in geological samples.

本文参考文献

[1]

赵博, 张德会, 于蕾, 等. 从克拉克值到元素的地球化学性质或行为再到成矿作用[J]. 矿物岩石地球化学通报, 2014, (2): 252-261.

Zhao B, Zhang D H, Yu L, et al. From clark values to elemental geochemical properties or behaviors, and to mineralization[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, (2): 252-261.

[2]

李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1): 287-293.

Li H, Zhang G Y, Yu B, et al. Structural superimposed halos method for prospecting blind ore-body in the deep of ore districts[J]. Earth Science Frontiers, 2010, 17(1): 287-293.

[3]

迟清华. 汞在地壳、岩石和疏松沉积物中的分布[J]. 地球化学, 2004, 33(6): 641-648.

Chi Q H. Abundance of mercury in crust, rocks and loose sediments[J]. Geochimica, 2004, 33(6): 641-648.

[4]

陈静生. 环境地球化学[M] . 北京: 海洋出版社, 1990: 1-69.

Chen J S. Environmental Geochemistry[M] . Beijing: Ocean Press House, 1990: 1-69.
[5]

Hu B, He M, Chen B, et al. Nanometer-sized materials for solid-phase extraction of trace elements[J].Analytical and Bioanalytical Chemistry, 2015, 407(10): 2685-2710. doi: 10.1007/s00216-014-8429-9

[6]

Seidi S, Yamini Y, Rezazadeh M, et al. Electrochemically assi-sted solid based extraction techniques:A review[J]. Talanta, 2015, 132(10): 339-353.

[7]

黄运瑞, 周庆祥. 固相萃取吸附剂的研究进展[J]. 冶金分析, 2012, 32(12): 22-28. doi: 10.3969/j.issn.1000-7571.2012.12.004

Huang Y R, Zhou Q X. Research progress of solid phase extraction and sorbent[J].Metallurgical Analysis, 2012, 32(12): 22-28. doi: 10.3969/j.issn.1000-7571.2012.12.004

[8]

蔡述伟. 黄原酯棉富集-冷原子吸收法测定水和地质样品中的痕量汞[J]. 岩矿测试, 1992, 11(4): 348-349.

Cai S W. Derermination of trace mercury in water and geological samples by cold-AAS after enrichment with xanthate cotton[J]. Rock and Mineral Analysis, 1992, 11(4): 348-349.

[9]

陈焱, 李勇, 李长青, 等. 巯基棉分离富集-原子荧光光谱法测定重晶石中痕量汞[J]. 岩矿测试, 2008, 27(6): 431-434.

Chen Y, Li Y, Li C Q, et al. Separation and enrichment with sulfhydryl cotton-atomic fluorescence spectrometric determination of trace mercury in barit[J]. Rock and Mineral Analysis, 2008, 27(6): 431-434.

[10]

Shakerian F, Haji S A, Dadfarnia S, et al. Hydride gene-ration atomic absorption spectrometric determination of bismuth after separation and preconcentration with modified alumina[J].Journal of Separation Science, 2015, 38(4): 677-682. doi: 10.1002/jssc.201401050

[11]

吴芳华. 固相萃取新技术研究进展[J]. 分析测试技术与仪器, 2012, (2): 114-120.

Wu F H. Study of new technology on solid phase extraction[J]. Analytical Testing Techniques and Instruments, 2012, (2): 114-120.

[12]

Liu Q, Shi J, Jiang G, et al. Application of graphene in analy-tical sample preparation[J].TrAC Trends in Analytical Chemistry, 2012, 37: 1-11. doi: 10.1016/j.trac.2012.03.011

[13]

Yu J G, Yu L Y, Yang H, et al. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions[J].Science of the Total Environment, 2015, 502: 70-79. doi: 10.1016/j.scitotenv.2014.08.077

[14]

Chen Y, Chen L, Bai H, et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J].Journal of Materials Chemistry A, 2013, 1(6): 1992-2001. doi: 10.1039/C2TA00406B

[15]

Hsu S H, Wang M C, Lin J J, et al. Biocompatibility and anti-microbial evaluation of montmorillonite/chitosan nanocomposites[J]. Applied Clay Science, 2012, 56(1): 53-62.

[16]

Tang C Y, Chen N X, Zhang Q, et al. Preparation and proper-ties of chitosan nanocomposites with nanofillers of different dimensions[J]. Polymer Degradation & Stability, 2009, 94(1): 124-131.

[17]

Yang X M, Tu Y F, Li L, et al. Well-dispersed chitosan/gra-phene oxide nanocomposites[J]. Applied Materials & Interfaces, 2010, 2(6): 1707-1713.

[18]

Travlou N A, Kyzas G Z, Lazaridis N K, et al. Graphite oxide/chitosan composite for reactive dye removal[J].Chemical Engineering Journal, 2013, 217: 256-265. doi: 10.1016/j.cej.2012.12.008

[19]

Djerahov L, Vasileva P, Karadjova I, et al. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(Ⅲ), Cd(Ⅱ), Cu(Ⅱ), Co(Ⅱ), Fe(Ⅲ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ)[J].Carbohydrate Polymers, 2016, 147: 45-52. doi: 10.1016/j.carbpol.2016.03.080

[20]

Chandio Z A, Talpur F N, Khan H, et al. On-line pre-concentration and determination of ultra trace amounts of mercury using surfactant coated alumina modified by dithizone with cold vapor atomic absorption spectrometry[J].RSC Advances, 2014, 4(7): 3326-3331. doi: 10.1039/C3RA43712D

[21]

Carasek E, Tonjes J W, Scharf M, et al. A new method of mic-rovolume back-extraction procedure for enrichment of Pb and Cd and determination by flame atomic absorption spectrometry[J].Talanta, 2002, 56(1): 185-191. doi: 10.1016/S0039-9140(01)00556-2

[22]

Peng Q, Liu M, Zheng J, et al. Adsorption of dyes in aqu-eous solutions by chitosan-halloysite nanotubes composite hydrogel beads[J].Microporous and Mesoporous Materials, 2015, 201: 190-201. doi: 10.1016/j.micromeso.2014.09.003

[23]

Liu L, Li C, Bao C, et al. Preparation and characteriza-tion of chitosan/graphene oxide composites for the adsorption of Au(Ⅲ) and Pd(Ⅱ)[J]. Talanta, 2012, 93(2): 350-357.

[24]

Chen J, Yao B, Li C, et al. An improved Hummers me-thod for eco-friendly synthesis of graphene oxide[J].Carbon, 2013, 64: 225-229. doi: 10.1016/j.carbon.2013.07.055

[25]

Travlou N A, Kyzas G Z, Lazaridis N K, et al. Func-tionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent[J].Langmuir, 2013, 29(5): 1657-1668. doi: 10.1021/la304696y

[26]

Kyzas G Z, Travlou N A, Deliyanni E A, et al. The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions[J]. Colloids & Surfaces B Biointerfaces, 2014, 113(1): 467.

相似文献(共20条)

[1]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

赵延庆. 微型氢化物发生装置在冷原子吸收分光光度法测汞中的应用. 岩矿测试, 2008, 27(1): 69-70.

[4]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[5]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[6]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[7]

周丽萍, 李中玺. 断续流动在线分离富集-蒸气发生原子荧光光谱法测定复杂环境样品中痕量镉. 岩矿测试, 2006, 25(3): 233-238.

[8]

陈焱, 李勇, 李长青. 巯基棉分离富集-原子荧光光谱法测定重晶石中痕量汞. 岩矿测试, 2008, 27(6): 431-.

[9]

王桂清, 刘汉东. 悬浮液原子荧光光谱法测定化探样品中的痕量汞. 岩矿测试, 1996, (4): 293-295.

[10]

赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321.

[11]

徐爱琴. 原子荧光光谱法测砷锑铋汞中一些问题及解决方法. 岩矿测试, 2001, (1): 79-80.

[12]

徐国栋, 葛建华, 贾慧娴, 杜谷, 程江, 董俊. 水浴浸提-氢化物发生-原子荧光光谱法同时测定 地质样品中痕量砷和汞. 岩矿测试, 2010, 29(4): 391-394.

[13]

蔡述伟. 黄原酯棉富集—冷原子吸收法测定水和地质.... 岩矿测试, 1992, (4): 348-349353.

[14]

程先忠, 郑民奇, 林能永, 黄纪雄. 密闭溶样-原子荧光光谱法测定硫磺中微量汞. 岩矿测试, 2008, 27(5): 349-352.

[15]

周惠琼, 朱霞萍, 廖余游. 微波消解-氢化物发生原子荧光光谱法同时测定化肥中的砷和汞. 岩矿测试, 2012, 31(2): 268-271.

[16]

肖灵, 张培新, 胡月华. 原子荧光光谱法测定地质样品中的痕量锗. 岩矿测试, 2004, (3): 231-234.

[17]

李淑娟, 于兆水, 张勤. 氢化物发生-原子荧光光谱法测定地球化学样品中痕量铋. 岩矿测试, 2005, (3): 217-220.

[18]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[19]

吴海涛. 原子荧光光谱分析环境样品中砷锑铋汞易出现的问题及解决方法. 岩矿测试, 2007, 26(6): 509-510.

[20]

刘金, 彭元, 陈红梅, 程先忠. 鸡蛋膜固相萃取-石墨炉原子吸收光谱法测定水样中的微量铅. 岩矿测试, 2012, 31(5): 872-876.

计量
  • PDF下载量(40)
  • 文章访问量(915)
  • HTML全文浏览量(260)
  • 被引次数(0)
目录

Figures And Tables

双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞

周慧君, 帅琴, 黄云杰, 汤志勇, 曾梦