【引用本文】 王羽, 汪丽华, 王建强, 等. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J]. 岩矿测试, 2018, 37(3): 235-243. doi: 10.15898/j.cnki.11-2131/td.201612210188
WANG Yu, WANG Li-hua, WANG Jian-qiang, et al. Three-dimension Characterization of Organic Matter Pore Structures of Shale Using Focused Ion Beam-Scanning Electron Microscope[J]. Rock and Mineral Analysis, 2018, 37(3): 235-243. doi: 10.15898/j.cnki.11-2131/td.201612210188

基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构

1. 

中国科学院微观界面物理与探测重点实验室, 上海 201800

2. 

中国科学院上海应用物理研究所上海同步辐射光源, 上海 201204

3. 

中国科学院地质与地球物理研究所, 北京 100029

收稿日期: 2016-12-21  修回日期: 2017-05-10  接受日期: 2017-08-02

基金项目: 中国科学院战略性先导科技专项(B类)“页岩三维成像实验技术和数据获取技术”(XDB10020102);上海市科学技术委员会基础研究重点项目“页岩微观结构的同步辐射研究”(12JC1410400);国家杰出青年科学基金资助项目(41325016)

作者简介: 王羽, 助理研究员, 从事同步辐射技术在地质地震领域的应用研究。E-mail:yuwang@sinap.ac.cn

通信作者: 汪丽华, 副研究员, 从事同步辐射技术在地质考古领域的应用研究。E-mail:lhwang@sinap.ac.cn

Three-dimension Characterization of Organic Matter Pore Structures of Shale Using Focused Ion Beam-Scanning Electron Microscope

1. 

Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

2. 

Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

3. 

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: WANG Li-hua, lhwang@sinap.ac.cn

Received Date: 2016-12-21
Revised Date: 2017-05-10
Accepted Date: 2017-08-02

摘要:页岩中纳米级有机孔的大小直接影响页岩气含气量,其连通性亦对气体运移和开采至关重要。本文选择漆辽地区龙马溪组富有机质页岩,利用聚焦离子束-扫描电镜(FIB-SEM)在纳米尺度上(10 nm)进行有机孔结构的三维重构。研究结果表明:① FIB-SEM方法适用于微米级页岩的纳米(>3 nm)孔隙结构特征研究。②蜂窝状有机孔发育均匀,孔径集中于10~200 nm,连通性较差;界面有机孔孔径集中于200~300 nm,局部连通性较好。③页岩总孔隙度与有机质含量成正比。研究认为,对于以有机孔为重要储集空间的页岩,有机质分布越集中,连续性越好,研究孔隙度的表征单元体尺度越小。

关键词: 聚焦离子束-扫描电镜, 三维空间结构, 有机孔, 纳米孔隙结构, 龙马溪组页岩

要点

(1) FIB-SEM技术是一种有效的表征纳米微尺度页岩孔隙三维结构的方法。

(2) 龙马溪组页岩样品的总孔隙度与有机质含量成正比。

(3) 以有机质孔隙为主的页岩,有机质分布越集中及其较好的连续性,则使孔隙度的表征单元体越小。

Three-dimension Characterization of Organic Matter Pore Structures of Shale Using Focused Ion Beam-Scanning Electron Microscope

KEY WORDS: Focused Ion Beam-Scanning Electron Microscope, 3D structure, organic matter pores, nano-scale pore structure, Longmaxi Formation shale

HIGHLIGHTS

(1) Focused Ion Beam-Scanning Electron Microscope (FIB-SEM) is an effective technique for 3D characterization of nano-scale (> 3 nm) pore structures of micro-scale shale samples.

(2) The bulk porosity of Longmaxi shale sample is proportional to organic matter content.

(3) For shale dominated by organic matter pores, the concentrated distribution of the organic matter and the good continuity results in a small unit cell for characterization of porosity.

本文参考文献

[1]

Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types for matrix-related mud pores[J].AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061

[2]

邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864.

Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.

[3]

王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(3): 278-285.

Wang Y, Jin C, Wang L H, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis, 2015, 34(3): 278-285.

[4]

王羽, 金婵, 姜政, 等. 渝东五峰组-龙马溪组页岩矿物成分与孔隙特征分析[J]. 矿物学报, 2016, 36(4): 555-562.

Wang Y, Jin C, Jiang Z, et al. Mineral composition and microscopic pore characteristics of Wufeng-Longmaxi Formation shale in Eastern Chongqing City, China[J]. Acta Geologica Sinica, 2016, 36(4): 555-562.

[5]

马勇, 钟宁宁, 程礼军, 等. 渝东南两套富有机质页岩的孔隙结构特征——来自FIB-SEM的新启示[J]. 石油实验地质, 2015, 37(1): 109-116. doi: 10.11781/sysydz201501109

Ma Y, Zhong N N, Cheng L J, et al. Pore structure of two organic-rich shales in Southeastern Chongqing area:Insight from focused ion beam scanning electron microscope (FIB-SEM)[J].Petroleum Geology & Experiment, 2015, 37(1): 109-116. doi: 10.11781/sysydz201501109

[6]

Zhou S W, Yan G, Xue H Q, et al. 2D and 3D nanopore characterization of gas shale in Longmaxi Formation based on FIB-SEM[J].Marine and Petroleum Geology, 2016, 73: 174-180. doi: 10.1016/j.marpetgeo.2016.02.033

[7]

Klaver J, Desbois G, Littke R, et al. BIB-SEM pore characterization of mature and post mature Posidonia shale samples from the Hils area, Germany[J].International Journal of Coal Geology, 2016, 158: 78-89. doi: 10.1016/j.coal.2016.03.003

[8]

Wang Y, Wang L H, Wang J Q, et al. Investigating microstructure of Longmaxi shale in Shizhu area, Sichuan Basin, by optical microscopy, scanning electron microscopy and micro-computed tomography[J].Nuclear Science and Techniques, 2017, 28: 163. doi: 10.1007/s41365-017-0317-5

[9]

Ma L, Taylor K G, Lee P D, et al. Novel 3D centimetre-to nano-scale quantification of an organic-rich mudstone:The carboniferous Bowland shale, Northern England[J].Marine and Petroleum Geology, 2016, 72: 193-205. doi: 10.1016/j.marpetgeo.2016.02.008

[10]

Wang Y, Pu J, Wang L, et al. Characterization of typical 3D pore networks of Jiulaodong Formation shale using nano-transmission X-ray microscopy[J].Fuel, 2016, 170: 84-91. doi: 10.1016/j.fuel.2015.11.086

[11]

吴松涛, 朱如凯, 崔京钢, 等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2): 167-176. doi: 10.11698/PED.2015.02.05

Wu S T, Zhu R K, Cui J G, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(2): 167-176. doi: 10.11698/PED.2015.02.05

[12]

王羽, 汪丽华, 王建强, 等. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征[J]. 岩矿测试, 2017, 36(6): 563-573.

Wang Y, Wang L H, Wang J Q, et al. Investigation of organic matter pore structures of shale in three dimensions using nano-X-ray microscopy[J]. Rock and Mineral Analysis, 2017, 36(6): 563-573.

[13]

Misch D, Mendez-Martin F, Hawranek G, et al. SEM and FIB-SEM investigations on potential gas shales in the Dniepr-Donets Basin (Ukraine):Pore space evolution in organic matter during thermal maturation[J]. IOP Conference Series:Materials Science and Engineering, 2016, 109(012010).

[14]

Jiang W B, Lin M, Yi Z X, et al. Parameter determination using 3D FIB-SEM images for development of effective model of shale gas flow in nanoscale pore clusters[J].Transport in Porous Media, 2017, 117(1): 5-25. doi: 10.1007/s11242-016-0817-5

[15]

Wang Y, Luo S, Wang L, et al. Synchrotron radiation-based/1-norm regularization on micro-CT imaging in shale structure analysis[J]. Journal of Inverse and Ill-posed Problems, 2017, 25(4): 483-498.

[16]

Loucks R G, Reed R M. Scanning-electron-microscope petrographic evidence for distinguishing organic matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. Gulf Coast Association of Geological Societies Journal, 2014, 3: 51-60.

[17]

Zhu X J, Cai J G, Liu W X, et al. Occurrence of stable and mobile organic matter in the clay-sized fraction of shale:Significance for petroleum geology and carbon cycle[J].International Journal of Coal Geology, 2016, 160-161: 1-10. doi: 10.1016/j.coal.2016.03.011

[18]

Zhang H, Zhu Y M, Wang Y, et al. Comparison of organic matter occurrence and organic nanopore structure within marine and terrestrial shale[J].Journal of Natural Gas Science and Engineering, 2016, 32: 356-363. doi: 10.1016/j.jngse.2016.04.040

[19]

Ko L T, Loucks R G, Ruppel S C, et al. Origin and characterization of Eagle Ford pore networks in the South Texas Upper Cretaceous shelf[J].AAPG Bulletin, 2017, 101(3): 387-418. doi: 10.1306/08051616035

[20]

Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems:The Mississippian Barnett shale of North-Central Texas as one model for thermogenic shale-gas assessment[J].American Association of Petroleum Geologists Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068

[21]

Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J].AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048

[22]

Hu H, Hao F, Lin J, et al. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China[J].International Journal of Coal Geology, 2017, 173: 40-50. doi: 10.1016/j.coal.2017.02.004

[23]

董大忠, 邹才能, 李建忠, 等. 页岩气资源潜力与勘探开发前景[J]. 地质通报, 2011, 30(2/3): 324-336.

Dong D Z, Zou C N, Li J Z, et al. Resource potential, exploration and development prospect of shale gas in the whole world[J]. Geological Bulletin of China, 2011, 30(2/3): 324-336.

[24]

杨珊, 廖泽文, 刘虎, 等. 渝东漆辽剖面五峰组-龙马溪组页岩及残余干酪根中微量元素地球化学特征[J]. 矿物岩石地球化学通报, 2015, 34(6): 1231-1237.

Yang S, Liao Z W, Liu H, et al. Geochemical characteristics of trace elements of shales and their residual kerogens from Wufeng-Longmaxi Formations in the Qiliao section, Eastern Chongqing, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(6): 1231-1237.

[25]

王羽, 金婵, 汪丽华, 等. 基于SEM图像灰度水平的页岩孔隙分割方法研究[J]. 岩矿测试, 2016, 35(6): 35-41.

Wang Y, Jin C, Wang L H, et al. Pore segmentation methods based on gray scale of SEM images[J]. Rock and Mineral Analysis, 2016, 35(6): 35-41.

[26]

Jiao K, Yao S P, Liu C, et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing:An example from the Lower Silurian Longmaxi shale, upper Yangtze region, China[J].International Journal of Coal Geology, 2014, 128-129: 1-11. doi: 10.1016/j.coal.2014.03.004

[27]

Tang X L, Jiang Z X, Li Z, et al. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China[J].Journal of Natural Gas Science and Engineering, 2015, 23: 464-473. doi: 10.1016/j.jngse.2015.02.031

[28]

Chen L, Lu Y C, Jiang S, et al. Heterogeneity of the lower Silurian Longmaxi marine shale in the Southeast Sichuan Basin of China[J].Marine and Petroleum Geology, 2015, 65: 232-246. doi: 10.1016/j.marpetgeo.2015.04.003

[29]

Gitman I M, Askes H, Sluys L J, et al. Representative volume:Existence and size determination[J].Engineering Fracture Mechanics, 2007, 74(16): 2518-2534. doi: 10.1016/j.engfracmech.2006.12.021

[30]

陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444.

Chen S B, Zhu Y M, Wang H Y, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the Southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444.

[31]

Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97(10): 1621-1643. doi: 10.1306/04011312194

[32]

Wang P F, Jiang Z X, Tang X L, et al. Microscopic pore structure and heterogeneity quantitative characterization of shale reservoir-take in Chongqing Southeast Longmaxi shale case[J].Acta Geologica Sinica, 2015, 89: 91-92. doi: 10.1111/acgs.2015.89.issue-s1

相似文献(共18条)

[1]

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征. 岩矿测试, 2017, 36(6): 563-573. doi: 10.15898/j.cnki.11-2131/td.201703240038

[2]

刘振庄, 白名岗, 杨玉茹, 张聪, 王向华, 陈娟, 谢婷, 方立羽, 秦丽娟. 龙马溪组页岩不同显微形态有机质成因及其勘探潜力探讨. 岩矿测试, 2020, 39(2): 199-207. doi: 10.15898/j.cnki.11-2131/td.201907110100

[3]

白名岗, 夏响华, 张聪, 孟凡洋, 杨玉茹, 张春贺, 代峰, 熊杰, 王向华, 于伟欣. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用. 岩矿测试, 2018, 37(3): 225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

[4]

陈生蓉, 帅琴, 高强, 田亚, 徐生瑞, 黄云杰. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究. 岩矿测试, 2015, 34(6): 636-642. doi: 10.15898/j.cnki.11-2131/td.2015.06.006

[5]

戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究. 岩矿测试, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

[6]

王羽, 汪丽华, 王建强, 王彦飞. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征. 岩矿测试, 2020, 39(4): 566-577. doi: 10.15898/j.cnki.11-2131/td.202003110030

[7]

庞河清, 曾焱, 刘成川, 黎华继, 彭军, 严焕榕, 陈俊. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构. 岩矿测试, 2017, 36(1): 66-74. doi: 10.15898/j.cnki.11-2131/td.2017.01.010

[8]

张聪, 夏响华, 杨玉茹, 白名岗, 代峰, 熊杰. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义. 岩矿测试, 2019, 38(1): 26-34. doi: 10.15898/j.cnki.11-2131/td.201803220025

[9]

王羽, 金婵, 汪丽华, 王建强, 姜政, 王彦飞, 普洁. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征. 岩矿测试, 2015, 34(3): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003

[10]

蔡芃睿, 王春连, 刘成林, 杨飞, 徐海明, 谢腾骁, 余小灿, 孟令阳. 运用扫描电镜和压汞法研究江汉盆地古新统—白垩系砂岩储层孔喉结构及定量参数特征. 岩矿测试, 2017, 36(2): 146-155. doi: 10.15898/j.cnki.11-2131/td.2017.02.008

[11]

张茜, 余谦, 王剑, 肖渊甫, 程锦翔, 赵安坤, 张彬. 应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境. 岩矿测试, 2018, 37(2): 217-224. doi: 10.15898/j.cnki.11-2131/td.201705090078

[12]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[13]

李回贵, 李化敏, 李长兴, 陈善乐. 应用扫描电镜-X射线能谱研究神东矿区砂岩中结构面的微观结构及元素特征. 岩矿测试, 2018, 37(1): 70-78. doi: 10.15898/j.cnki.11-2131/td.201705120080

[14]

朱洪, 刘静, 焦晗涛, 张晶, 段江涛, 连兴业, 侯亚楠. 基于SEM-EDS及GC-MS技术研究有机氯分子结构对零价铜脱氯机制的影响. 岩矿测试, 2015, 34(2): 169-175. doi: 10.15898/j.cnki.11-2131/td.2015.02.003

[15]

竺成林, 王华建, 叶云涛, 王晓梅, 黄家旋, 朱玉梅, 杨瑞东. 基于原位多元素成像分析龙马溪组笔石成因及地质意义. 岩矿测试, 2019, 38(3): 245-259. doi: 10.15898/j.cnki.11-2131/td.201810110113

[16]

邱灵佳, 黄国林, 帅琴, 苏玉. 灼烧法中有机质与总有机碳换算关系的重建及其在页岩分析中的应用. 岩矿测试, 2015, 34(2): 218-223. doi: 10.15898/j.cnki.11-2131/td.2015.02.011

[17]

柴之芳, 周瑶琪. 用扫描隧道显微镜研究铁陨石和铁质宇宙尘球粒的亚微米和纳米结构. 岩矿测试, 1996, (1): 1-12.

[18]

何廷鹏, 栾进华, 胡科, 李甜, 杨柳, 张跃磊. 渝东北城口地区Y1井页岩有机地球化学特征及勘探前景. 岩矿测试, 2018, 37(1): 87-95. doi: 10.15898/j.cnki.11-2131/td.201703230037

计量
  • PDF下载量(19)
  • 文章访问量(394)
  • HTML全文浏览量(149)
  • 被引次数(0)
目录

Figures And Tables

基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构

王羽, 汪丽华, 王建强, 姜政, 金婵, 王彦飞