

X射线荧光光谱分析技术在大理岩鉴定与分类中的应用
中国地质调查局沈阳地质调查中心, 辽宁 沈阳 110032 |
Application of X-ray Fluorescence Spectroscopy in Identification and Classification of Marble
Shenyang Geological Survey Center, China Geological Survey, Shenyang 110032, China |
摘要:大理岩的鉴定与分类主要依靠岩石薄片鉴定及X射线衍射(XRD)矿物半定量检测技术。工作中发现,岩石薄片鉴定技术及XRD矿物半定量检测技术所测得矿物组分含量很少一致,这就需要引入其他技术对岩石薄片鉴定及XRD矿物半定量检测结果加以验证。本文利用X射线荧光光谱仪(XRF)对野外采集的32件大理岩样品进行全岩化学成分分析,以岩石化学成分为基础,分析岩石杂质系数、镁质系数和钙质系数特征,对大理岩进行分类。结果表明:方解石大理岩、白云石大理岩、菱镁矿大理岩的镁质系数值分别为0.01~0.13、0.40~0.46、0.97~0.98,钙质系数值分别为0.78~0.84、0.30~0.49和0.01~0.02,不同类型大理岩的钙质系数和镁质系数明显不同,可以作为划分大理岩类型的主要依据。当岩石中SiO2+Al2O3含量大于35%(杂质系数大于为1.20),不能定为大理岩,只有岩石中SiO2+Al2O3含量小于30%(杂质系数小于1.00)时,可定为大理岩。杂质系数、镁质系数和钙质系数的应用,能够校正岩石薄片鉴定法及XRD矿物半定量法矿物含量检测不一致的问题,使大理岩分类定名更加准确。
Application of X-ray Fluorescence Spectroscopy in Identification and Classification of Marble
ABSTRACT The identification and classification of marble depended mainly on the identification of rock slices and the semi-quantitative detection of minerals by X-ray Diffraction (XRD). It was found that the results of identification of rock slices were not always consistent with those of the semi-quantitative detection by XRD. Therefore, it is necessary to introduce other techniques to verify the results of thin section observation and XRD semi-quantitative analysis. 32 marble samples were analyzed by X-ray Fluorescence Spectrometer, the results and finding of which are reported in this paper. Based on the chemical composition of rock, rock impurity, magnesite, and calcareous coefficients are used to classify the marble. The results show that magnesite coefficients of calcite marble, dolomite marble, and magnesite marble are 0.01-0.13, 0.40-0.46 and 0.97-0.98, respectively. Calcareous coefficients are 0.78-0.84, 0.30-0.49 and 0.01-0.02, respectively. Different types of marble have various magnesia and calcareous coefficients, which can be used as the main basis for the division of marble types. Only the contents of SiO2+Al2O3 in rocks are less than 30% (impurity coefficient less than 1.00), then can be classified as marbles. The establishment and application of impurity, magnesia and calcareous coefficients in marble can be used to correct the inconsistent results between thin section observation and X-ray Powder Diffraction mineral semi-quantitative analysis, making marble classification more accurate.

本文参考文献
[1] |
汤艳, 张云鹏, 齐先茂, 等. 很低级变质作用研究及其在沉积盆地中的应用[J]. 岩石矿物学杂志, 2015, 34(3): 353-364. Tang Y, Zhang Y P, Qi X M, et al. A study of the very low-grade metamorphism and its application to the sedimentary basin[J]. Acta Petrologica et Mineralogica, 2015, 34(3): 353-364. |
[2] |
刘昌伟, 胡煜昭, 任涛, 等. 塔里木盆地西缘阿克苏群变质岩岩相学特征与原岩恢复[J]. 矿物学报, 2017, 37(5): 617-624. Liu C W, Hu Y Z, Ren T, et al. Study on the petrographic features and protoliths reconstruction of Akesu group metamorphic rocks from the Northwestern Margin of Tarim Basin, the Xinjiang Uygur Autonomous Region, China[J]. Acta Mineralogica Sinica, 2017, 37(5): 617-624. |
[3] |
和志鹏, 刘继顺, 康亚龙, 等. 新疆塔什库尔干岩群变质岩原岩及产出构造环境研究[J]. 矿物学报, 2017, 37(3): 314-320. He Z P, Liu J S, Tang Y L, et al. Research on protolith and tectonic setting of tashenkuergan group metamorphic rocks in Tatulugou area, Xinjiang Autonomous Region, China[J]. Acta Mineralogica Sinica, 2017, 37(3): 314-320. |
[4] |
唐梦奇, 罗明贵, 韦彦强, 等. 铜冶炼炉渣的X射线衍射Rietveld全谱图拟合物相定量分析[J]. 冶金分析, 2016, 36(11): 11-16. Tang M Q, Luo M G, Wei Y Q, et al. Quantitative analysis of phases in copper smelting slag by Rietveld full spectrum fitting of X-ray diffraction[J]. Metallurgical Analysis, 2016, 36(11): 11-16. |
[5] |
严俊, 刘晓波, 王巨安, 等. 应用FTIR-XRD-XRF分析测试技术研究新型仿制绿松石的矿物学特征[J]. 岩矿测试, 2015, 34(5): 544-549. Yan J, Liu X B, Wang J A, et al. Determination of mineral compositions of new kinds of imitated turquoise by FTIR-XRD-XRF[J]. Rock and Mineral Analysis, 2015, 34(5): 544-549. |
[6] |
张志丹, 罗香丽, 王继红, 等. 吉林省主要土壤胶散复合体粘土矿物XRD物相研究[J]. 矿物学报, 2016, 36(1): 97-102. Zhang Z D, Luo X L, Wang J H, et al. Research on XRD phase for clay minerals in organo-mineral complex of major soil from Jilin Province, China[J]. Acta Mineralogica Sinica, 2016, 36(1): 97-102. |
[7] |
乔蓉, 郭钢. X射线荧光光谱法测定白云石、石灰石中氧化钙、氧化镁和二氧化硅[J]. 冶金分析, 2014, 34(1): 75-78. Qiao R, Guo G. Determination of calcium oxide, magnesium oxide and silicon dioxide in dolomite and limestone by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2014, 34(1): 75-78. |
[8] |
曲月华, 王翠艳, 王一凌, 等. 熔融制样-X射线荧光光谱法测定石灰石中5种组分[J]. 冶金分析, 2013, 33(2): 230-235. Qu Y H, Wang C Y, Wang Y L, et al. Determination of five components in limestone by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2013, 33(2): 230-235. |
[9] |
罗学辉, 苏建芝, 鹿青, 等. 高倍稀释熔融制样-X射线荧光光谱法测定铅锌矿中主次组分[J]. 冶金分析, 2014, 34(1): 50-54. Luo X H, Su J Z, Lu Q, et al. Determination of major and minor components in lead-zinc ores by X-ray fluorescence spectrometry with high dilution fusion sample preparation[J]. Metallurgical Analysis, 2014, 34(1): 50-54. |
[10] |
陈静, 高志军, 陈冲科, 等. X射线荧光光谱法分析地质样品的应用技巧[J]. 岩矿测试, 2015, 34(1): 91-98. Chen J, Gao Z J, Chen C K, et al. Application skills on determination of geological sample by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91-98. |
[11] |
褚宁, 李卫刚, 蒋晓光, 等. 熔融制样波长色散X射线荧光光谱法测定白云石中钙镁硅铁铝[J]. 岩矿测试, 2014, 33(6): 834-838. Chu N, Li W G, Jiang X G, et al. Determination of calcium, magnesium, silicon, iron and aluminum in dolomite by wavelength dispersive X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 834-838. |
[12] |
赵仕华. 新疆博格达山北麓白杨河剖面页岩地球化学特征及其地质意义[J]. 岩石矿物学杂志, 2016, 35(2): 255-264. Zhao S H. Geochemical characteristics of the Baiyanghe shale in the Northern Bogda Mountain of Xinjiang and its geological significance[J]. Acta Petrologica et Mineralogica, 2016, 35(2): 255-264. |
[13] |
冀磊, 刘福来, 王舫, 等. 点苍山-哀牢山杂岩带中北段嘎洒地区变沉积岩的成因矿物学与变质演化特征[J]. 岩石矿物学杂志, 2016, 35(6): 1003-1024. Ji L, Liu F L, Wang F, et al. Genetic mineralogy and metamorphic evolution of metasedimentary rocks in Gasa area, middle-north segment of Ailao Mountain metamorphic complex belt[J]. Acta Petrologica et Mineralogica, 2016, 35(6): 1003-1024. |
相似文献(共19条)
[1] |
王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234. |
[2] |
余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150. |
[3] |
王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40. |
[4] |
王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78. |
[5] |
李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231. |
[6] |
刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44. |
[7] |
徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76. |
[8] |
钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73. |
[9] |
许乃岑, 沈加林, 张静. X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用. 岩矿测试, 2015, 34(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2015.01.010 |
[10] |
迟广成, 肖刚, 伍月, 陈英丽, 王海娇, 胡建飞. X射线粉晶衍射仪在大理岩鉴定与分类中的应用. 岩矿测试, 2014, 33(5): 698-705. |
[11] |
梁述廷, 刘玉纯, 刘瑱, 林庆文, 刘志伟. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用. 岩矿测试, 2015, 34(2): 201-206. doi: 10.15898/j.cnki.11-2131/td.2015.02.008 |
[12] |
汪寅夫, 李清, 刘琦, 迟广成, 伍月, 胡建飞. X射线衍射和电子探针技术在矿物药雄黄鉴定及质量评价中的应用. 岩矿测试, 2014, 33(5): 706-713. |
[13] |
徐翠, 李林庆, 张洁, 何丽, 张桂凤, 王艳龙. X射线荧光光谱-电子探针在中酸性火山岩鉴定中的应用. 岩矿测试, 2016, 35(6): 626-633. doi: 10.15898/j.cnki.11-2131/td.2016.06.009 |
[14] | |
[15] |
李大勇, 朱志雄, 李靖, 王亮. X射线荧光光谱法半定量分析高烧失量矿物的准确度研究. 岩矿测试, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034 |
[16] |
李鹏程, 王梅英, 李艳华, 张明炜, 刘春霞, 王冀艳, 刘勉, 陈冲科, 鲁鲲, 李振. 熔融制样X射线荧光光谱法测定珍珠岩矿中主量元素. 岩矿测试, 2015, 34(1): 104-110. doi: 10.15898/j.cnki.11-2131/td.2015.01.014 |
[17] |
魏灵巧, 宋红元, 易达, 罗磊, 付胜波, 黄瑞成. 熔融制样X射线荧光光谱法测定含硫量高的石膏矿物中主次量元素. 岩矿测试, 2015, 34(4): 448-453. doi: 10.15898/j.cnki.11-2131/td.2015.04.012 |
[18] |
孟长峰, 薛俊辉. X射线荧光光谱-X射线衍射研究宁夏贺兰石岩石矿物学特征. 岩矿测试, 2018, 37(1): 50-55. doi: 10.15898/j.cnki.11-2131/td.201709050141 |
[19] |
王梅英, 李鹏程, 李艳华, 李莹, 王留芳, 陈静. 蓝晶石矿中氟钠镁铝硅铁钛钾钙元素的X射线荧光光谱分析. 岩矿测试, 2013, 32(6): 909-914. |
计量
- PDF下载量(52)
- 文章访问量(3136)
- HTML全文浏览量(1863)
- 被引次数(0)