【引用本文】 查向平, 龚冰, 郑永飞, . 高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定[J]. 岩矿测试, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174
ZHA Xiang-ping, GONG Bing, ZHENG Yong-fei. Precise Measurement of Carbon Concentration and Isotopic Ratios in Silicate Rocks by a High Sensitivity Elemental Analyzer Coupled with a Continuous Flow Isotope Mass Spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 327-339. doi: 10.15898/j.cnki.11-2131/td.201611190174

高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定

中国科学院壳幔物质与环境重点实验室, 中国科学技术大学地球和空间科学学院, 安徽 合肥 230026

收稿日期: 2016-11-19  修回日期: 2017-03-10  接受日期: 2017-07-15

基金项目: 中央高校基本科研业务费专项资金资助(WK3410000007)

作者简介: 查向平, 工程师, 主要从事稳定同位素实验技术、方法研究和同位素测试。E-mail:xpzha@ustc.edu.cn。

Precise Measurement of Carbon Concentration and Isotopic Ratios in Silicate Rocks by a High Sensitivity Elemental Analyzer Coupled with a Continuous Flow Isotope Mass Spectrometry

Key Laboratory of Crust-Mantle Materials and Environments, Chinese Academy of Sciences, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

Received Date: 2016-11-19
Revised Date: 2017-03-10
Accepted Date: 2017-07-15

摘要:硅酸盐岩中含有微量的碳,对其精确地分析可以示踪流体的来源和形成过程。元素分析仪-同位素质谱方法(EA-IRMS)是一种使用样品量小、快速的分析方法,本文将EA-IRMS技术应用于硅酸盐岩中微量碳同位素组成的测定,基于一系列条件实验,确认了硅酸盐岩中微量碳分析的EA-IRMS连续流方法的关键条件参数。标准物质选择和归一化处理使用以下方法:① 选择较宽碳同位素组成范围且合理的碳同位素分布的标准物质,以高纯石英粉末与之混合来模拟天然样品中的基质。② 利用与样品类似含量的3个标准物质的测量值和标准真值建立校准曲线,对天然样品的测量值进行标准化,从而实现了对硅酸盐岩中低至600 μg/g微量碳含量和同位素组成的精确测定。用国家标准物质GBW04416作为未知样品检验了不同含量下拟合的线性方程,在碳含量不低于600 μg/g时,标准偏差分别约为0.02‰、0.04‰、0.05‰、-0.07‰、0.11‰;在MERCK+USGS24混合物中,测量的δ13C值在标准误差范围内与理论值是一致的。因此,对于碳含量不低于600 μg/g的30 mg硅酸盐岩样品,本方法能够获得高精准度的碳同位素分析结果。根据不同碳含量的标准混合物的峰面积(峰强度)和相对应的含量所建立的线性曲线获得样品的碳含量,碳含量的分析误差在10%以内。

关键词: 元素分析仪, 碳含量, 碳同位素比值, 硅酸盐岩

Precise Measurement of Carbon Concentration and Isotopic Ratios in Silicate Rocks by a High Sensitivity Elemental Analyzer Coupled with a Continuous Flow Isotope Mass Spectrometry

KEY WORDS: elemental analyzer, carbon concentration, carbon isotope ratio, silicate rocks

Highlights

· Micro-amounts of carbon isotopes are analyzed in silicate rocks by a high sensitivity elemental analyzer coupled with a continuous flow isotope mass spectrometrer.

· Potential silicate matrix effects on the carbon isotopic analyses have been investigated by measuring the mixtures of well-calibrated carbon reference materials and quartz powder.

· The calibration lines used to correct δ13C values of natural samples with low carbon content have been established by the measured raw values and the known values of reference materials mixing with quartz powder respectively, the carbon content of which compared with that of natural samples.

本文参考文献

[1]

王建国, 陈代钊, 严德天, 等. 重大地质转折期的碳、硫循环和环境演变[J]. 地学前缘, 2009, 16(6): 33-47.

Wang J G, Chen D Z, Yan D T, et al. Variation in carbon and sulphur isotopes and environments during the critical geological transitions[J]. Earth Science Frontiers, 2009, 16(6): 33-47.

[2]

Newton R, Bottrell S. Stable isotopes of carbon and sulphur as indicators of environmental change:Past and present[J].Geological Society of London, 2007, 164: 691-708. doi: 10.1144/0016-76492006-101

[3]

郑永飞,陈江峰. 稳定同位素地球化学[M] . 北京: 科学出版社, 2000: 193

Zheng Y F,Chen J F. Stable Isotope Geochemistry[M] . Beijing: Science Press, 2000: 193
[4]

Zheng Y F, Gong B, Li Y L, et al. Cabon concentrations and isotopic ratios of ecologites from the Dabie and Sulu terranes in China[J].Chemical Geology, 2000, 168: 291-305. doi: 10.1016/S0009-2541(00)00199-6

[5]

Hansen H J. Stable isotope of carbon from basaltic rocks and their possible relation to atmospheric isotope excursions[J].Lithos, 2006, 92: 105-116. doi: 10.1016/j.lithos.2006.03.029

[6]

Wierzbowski K. Effects of pre-treatments and organic matter on oxygen and carbon isotope analyses of skeletal and inorganic calcium carbonate[J].International Journal of Mass Spectrometry, 2007, 268: 16-29. doi: 10.1016/j.ijms.2007.08.002

[7]

彭亚君, 王玉钰, 刘冬艳, 等. 酸化过程对海洋沉积物中有机碳同位素分析的影响[J]. 海洋学报, 2015, 37(12): 85-92.

Peng Y J, Wang Y Y, Liu D Y, et al. Acid treatment effects on the carbon stable isotope values of marine sediments[J]. Haiyang Xuebao, 2015, 37(12): 85-92.

[8]

Könitzer S F, Leng M J, Davies S J, et al. An assessment of geochemical preparation methods prior to organic carbon concentration and carbon isotope ratio analyses of fine-grained sedimentary rocks[J].Geochemistry Geophysics Geosystems, 2012, 13. doi: 10.1029/2012GC004094

[9]

Gehre M, Strauch G. High-temperature elemental analysis and pyrolysis techniques for stable isotope analysis[J].Rapid Communications in Mass Spectrometry, 2003, 17: 1497-1503. doi: 10.1002/(ISSN)1097-0231

[10]

Epstein S, Jr Taylor H P. The concentration and isotopic composition of hydrogen, carbon, and silicon in Apollo 11 lunar rocks and minerals[J]. Apollo 11 Lunar Science Conference, 1970, 12: 1085-1096.

[11]

Sakai H, Smith J W, Kaplan I R, et al. Micro-determinations of C, N, S, H, He, metallic Fe, δ13C, δ15N and δ34S in geologic samples[J].Geochemical Journal, 1976, 10: 85-96. doi: 10.2343/geochemj.10.85

[12]

Spötl C, Mattey D. Stable isotope microsampling of spe-leothems for palaeoenvironmental studies:A comparison of microdrill, micromill and laser ablation techniques[J].Chemical Geology, 2006, 235: 48-58. doi: 10.1016/j.chemgeo.2006.06.003

[13]

House C H, Schopf J W, Mckeegan K D, et al. Carbon isotopic composition of individual Precambrian microfossils[J].Geology, 2000, 28(8): 707-710. doi: 10.1130/0091-7613(2000)28<707:CICOIP>2.0.CO;2

[14]

Zinner E.Isotopic Measurements with the Ion Microprobe[M]//Shanks Ⅲ W C, Criss R E (eds.).New Frontiers in Stable Isotopic Research:Laser Probe, Ion Probe, and Small-sample Analysis.U.S. Geological Survey Bulletin, 1986:145-162.

[15]

Valley J W, Graham C M, Harte B, et al.Ion Microprobe Analysis of Oxygen, Carbon and Hydrogen Isotope Ratios[M]//Applicants of Microanalytical Techniques to Understanding Mineralizing Processes. Mckibben M A, Shanks Ⅲ W C, Ridley W I (eds.).Society of Economic Geologist, 1998:73-98.

[16]

Floss C, Stadermann F J.Complementary carbon, nitrogen and oxygen isotopic imaging of interplanetary dust particle:Presolar grains and an indication of a carbon isotopic anomaly[J].Lunar and Planetary Science, 2003, XXXIV, Abstract#1238:2.

[17]

Floss C, Stadermann F J.Isotopically primitive interplanetary dust particles of cometary origin:Evidence from nitrogen isotopic compositions[J]. Lunar and Planetary Science, 2004, XXXV, Abstract#1281:2.

[18]

Preston T, Owens N J P. Interfacing an automatic elemental analyzer with an isotope ratio mass spectrometer:The potential for fully automated total nitrogen and nitrogen-15 analysis[J].Analyst, 1983, 108: 971-977. doi: 10.1039/an9830800971

[19]

Brenna J T, Corso T N, Tobias H J, et al. High-precision continuous-flow isotope ratio mass spectrometry[J].Mass Spectrometry Reviews, 1997, 16: 227-258. doi: 10.1002/(ISSN)1098-2787

[20]

Raghavan M, McCullagh J S O, Lynnerup N, et al. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry:Paleodietary implications fromintra-individual comparisons[J].Rapid Communications in Mass Spectrometry, 2010, 24: 541-548. doi: 10.1002/rcm.v24:5

[21]

Galimov E M, Sevastyanov V S, Kulbachevskaya E V, et al. Isotope ratio mass spectrometry:δ13C and δ15N analysis for tracing the origin of illicit drugs[J].Rapid Communications in Mass Spectrometry, 2005, 19: 1213-1216. doi: 10.1002/(ISSN)1097-0231

[22]

Croft D J, Pye K. The potential use of continuous-flow isotope-ratio mass spectrometry as a tool in forensic soil analysis:A preliminary report[J].Rapid Communications in Mass Spectrometry, 2003, 17: 2581-2584. doi: 10.1002/(ISSN)1097-0231

[23]

郑永飞, 龚冰, 王峥荣, 等. 岩石中碳同位素比值的EA-IRMS测定及其地球化学应用[J]. 地质论评, 1999, 45(5): 529-538.

Zheng Y F, Gong B, Wang Z R, et al. EA-IRMS online analysis of both carbon concentration and isotopic ratio of silicate rocks and its geological applications[J]. Geological Review, 1999, 45(5): 529-538.

[24]

Zheng Y F, Gong B, Zhao Z F, et al. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane:Carbon isotope, zircon U-Pb dating and oxygen isotope[J].Lithos, 2003, 70: 321-343. doi: 10.1016/S0024-4937(03)00104-X

[25]

Zhao Z F, Zheng Y F, Wei C S, et al. Carbon concen-tration and isotope composition of Granites from Southeast China[J]. Physics and Chemistry of the Earth (A), 2001, 29: 821-833.

[26]

Cater J F, Barwick V J.Good Practice Guide for Isotope Ratio Mass Spectrometry[M].FIRMS(2011).ISBN 978-0-948926-31-0.

[27]

王政, 刘卫国, 文启彬, 等. 土壤样品中的氮同位素组成的元素分析仪-同位素质谱分析方法[J]. 质谱学报, 2005, 26(2): 71-75.

Wang Z, Liu W G, Wen Q B, et al. Measurement of nitrogen isotopic composition of soil samples by element analysis-isotope mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2005, 26(2): 71-75.

[28]

崔杰华, 祁彪, 王颜红, 等. 植物样品中稳定碳同位素的EA-IRMS系统分析方法[J]. 质谱学报, 2008, 29(1): 24-29.

Cui J H, Qi B, Wang Y H, et al. Measurement of stable carbon isotopic composition of plant samples by EA-IRMS system[J]. Journal of Chinese Mass Spectrometry Society, 2008, 29(1): 24-29.

[29]

Grassineau N V. High-precision EA-IRMS analysis of S and C isotopes in geological materials[J].Applied Geochemisty, 2006, 21: 756-765. doi: 10.1016/j.apgeochem.2006.02.015

[30]

Craig H. Isotopic standards for carbon and oxygen and corrections factors for mass spectrometric analysis of carbon dioxide[J].Geochimica et Cosmochimica Acta, 1957, 12: 133-149. doi: 10.1016/0016-7037(57)90024-8

[31]

Werner R A, Brand W A. Referencing strategies and techniques in stable isotope ratio analysis[J].Rapid Communications in Mass Spectrometry, 2001, 15: 501-519. doi: 10.1002/(ISSN)1097-0231

[32]

查向平, 龚冰, 郑永飞, 等. 低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化[J]. 岩矿测试, 2014, 33(4): 453-467.

Zha X P, Gong B, Zheng Y F, et al. Data normalization and quality control of light element stable isotope analyses by means of continuous flow isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 453-467.

[33]

Skrzypek G. Normalization procedures and reference materials selection in stable HCNOS isotope analyses:An overview[J].Analytical and Bioanalytical Chemistry, 2013, 405: 2815-2823. doi: 10.1007/s00216-012-6517-2

相似文献(共20条)

[1]

林守麟, 张霞娟. 硅酸盐岩石中硅的流动注射分析. 岩矿测试, 1990, (3): 213-216.

[2]

徐国栋, 葛建华, 王凤玉, 程江. 应用元素分析仪测定铅锌矿中的高含量硫. 岩矿测试, 2015, 34(2): 234-237. doi: 10.15898/j.cnki.11-2131/td.2015.02.014

[3]

胡外英, 张勤, 于兆水. 多目标地球化学调查土壤样品中氮和碳的快速测定. 岩矿测试, 2007, 26(3): 235-237.

[4]

德国耶拿分析仪器股份公司. 介绍一种适用范围广泛、一机多用的新型元素分析仪——multi EA 2000C、S、Cl分析仪. 岩矿测试, 2004, (4): 320-321.

[5]

程思海, 陈道华, 雷知生. 使用元素分析仪测定海洋沉积物中的硫化物. 岩矿测试, 2011, 30(1): 63-66.

[6]

徐丽, 邢蓝田, 王鑫, 李中平, 毛俊丽. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定. 岩矿测试, 2018, 37(1): 15-20. doi: 10.15898/j.cnki.11-2131/td.201701130005

[7]

张媛媛, 贺行良, 孙书文, 朱志刚. 元素分析仪-同位素比值质谱仪测定海洋沉积物有机碳稳定同位素方法初探. 岩矿测试, 2012, 31(4): 627-631.

[8]

李莉. 利用Multi EA(R)2000型元素分析仪测量含铅样品中的碳硫含量. 岩矿测试, 2004, (4): 319-320.

[9]

杨会, 唐伟, 吴夏, 王华, 应启和, 涂林玲. Kiel Ⅳ-IRMS双路在线分析微量碳酸盐的碳氧同位素. 岩矿测试, 2014, 33(4): 480-485.

[10]

王宁, 朱庆增, 谢曼曼, 宋智甲, 王道聪, 贾秋唤, 岑况, 储国强, 孙青. 尿素络合法分离-气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素. 岩矿测试, 2015, 34(4): 471-479. doi: 10.15898/j.cnki.11-2131/td.2015.04.016

[11]

张其春, 张志军, 尹观, 周蓉生. 碳酸盐岩锶同位素比值测定中的残渣分析. 岩矿测试, 2003, (2): 151-153.

[12]

刘敬秀. 硅酸盐氧同位素标样研制. 岩矿测试, 1990, (4): 276-282.

[13]

安娜, 韩友科. 金刚石剥层燃烧法分析其碳同位素组成. 岩矿测试, 1986, (4): 296-303.

[14]

李立武, 胡沛青, 张铭杰, 房玄, 杜丽. 岩石热脱气单体碳/氢同位素组成分析装置. 岩矿测试, 2005, (2): 135-137.

[15]

凌媛, 黄毅, 尚文郁, 谢曼曼, 刘舒波, 孙青. 水中氯代烃单体碳同位素分析中预富集方法进展. 岩矿测试, 2011, 30(6): 795-801.

[16]

凌进中. 硅酸盐岩石分析50年. 岩矿测试, 2002, (2): 129-142.

[17]

陈成业, 刘本立. 大红山古火山口的碳酸盐围岩的氧和碳同位素研究. 岩矿测试, 1982, (4): 1-5.

[18]

孙宝山, 黄萱, 潘均, 张任祜. 硅酸盐中钐、钕同位素稀释测定提取方法研究. 岩矿测试, 1983, (3): 216-218.

[19]

张健, 陈华, 陆太进, 丘志力, 魏然, 柯捷. 山东金刚石碳同位素组成的二次离子质谱显微分析. 岩矿测试, 2012, 31(4): 591-596.

[20]

张逐月, 刘美美, 谢曼曼, 王道聪, 凌媛, 尚文郁, 刘舒波, 岑况, 孙青. 5A分子筛吸附混合溶剂洗脱-气相色谱-同位素质谱分析土壤中正构烷烃单体碳同位素. 岩矿测试, 2012, 31(1): 178-183.

计量
  • PDF下载量(25)
  • 文章访问量(1108)
  • HTML全文浏览量(321)
  • 被引次数(0)
目录

Figures And Tables

高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定

查向平, 龚冰, 郑永飞