【引用本文】 孟郁苗, 黄小文, 高剑峰, 等. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J]. 岩矿测试, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004
MENG Yu-miao, HUANG Xiao-wen, GAO Jian-feng, et al. Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration[J]. Rock and Mineral Analysis, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004

无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成

中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州 贵阳 550081

收稿日期: 2016-09-23  修回日期: 2016-11-02  接受日期: 2016-11-16

作者简介: 孟郁苗,助理研究员,从事非传统稳定同位素地球化学及低温矿床成因研究。E-mail:mengyumiao@vip.gyig.ac.cn。

通信作者: 黄小文,助理研究员,从事矿物微区分析、Re-Os同位素及铁矿床成因研究。E-mail:huangxiaowen@vip.gyig.ac.cn

Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration

State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

Corresponding author: HUANG Xiao-wen, huangxiaowen@vip.gyig.ac.cn

Received Date: 2016-09-23
Revised Date: 2016-11-02
Accepted Date: 2016-11-16

摘要:激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)常用于磁铁矿原位微量元素分析,按照校正策略不同,主要分为内标法和无内标法。内标法需要用电子探针(EMPA)预先测定磁铁矿中内标元素Fe的含量,过程较繁琐,且待测元素含量会受到内标元素含量测定的影响。本文采用铁含量较高的玄武质玻璃BCR-2G、BIR-1G、BHVO-2G和GSE-1G作为外标,避免了内标元素含量的测定,建立了无内标-多外标校正LA-ICP-MS测定磁铁矿微量元素组成的分析方法。利用该方法测定了科马提岩玻璃GOR-128g和自然岩浆磁铁矿BC 28的微量元素组成以评估方法的可靠性。结果表明,科马提岩玻璃的测定结果与推荐值及前人内标法的测定值一致,多数元素的相对标准偏差RSD<5%;自然岩浆磁铁矿的测定结果与推荐值相比,多数元素的RSD<7%,低于前人内标法的RSD(<15%)。由此说明无内标-多外标法可以实现富铁硅酸岩或磁铁矿微量元素含量的准确校正,克服了基体效应的影响。因此,无内标-多外标法是一种原位测定磁铁矿微量元素含量的快速、准确方法,具有一定的应用潜力。

关键词: 磁铁矿, 微量元素, 无内标-多外标, 激光剥蚀等离子体质谱法, 基体效应

Determination of Trace Elements in Magnetite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using Multiple External Standards without an Internal Standard Calibration

KEY WORDS: magnetite, trace elements, multiple external standards without internal standard, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, matrix effects

本文参考文献

[1]

Jackson S E, Longerich H P, Dunning G R, et al. The Application of Laser-Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to in situ Trace-element Determinations in Minerals[J].Canadian Mineralogist, 1992, 30: 1049-1064.

[2]

Fryer B J, Jackson S E, Longerich H P, et al. The Design,Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences[J].The Canadian Mineralogist, 1995, 33: 303-312.

[3]

Russo R E, Mao X L, Liu H C, et al. Laser Ablation in Analytical Chemistry-A Review[J].Talanta, 2002, 57(3): 425-451. doi: 10.1016/S0039-9140(02)00053-X

[4]

Mokgalaka N S, Gardea-Torresdey J L. Laser Ablation Inductively Coupled Plasma Mass Spectrometry:Principles and Applications[J].Applied Spectroscopy Reviews, 2006, 41(2): 131-150. doi: 10.1080/05704920500510703

[5]

Cook N, Ciobanu C L, George L, et al. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry:Approaches and Opportunities[J].Minerals, 2016, 6(111): 1-34.

[6]

Norman M, Robinson P, Clark D, et al. Major- and Trace-element Analysis of Sulfide Ores by Laser-Ablation ICP-MS,Solution ICP-MS,and XRF:New Data on International Reference Materials[J].The Canadian Mineralogist, 2003, 41(2): 293-305. doi: 10.2113/gscanmin.41.2.293

[7]

Müller A, Wiedenbeck M, van Den Kerkhof A M, et al. Trace Elements in Quartz-A Combined Electron Microprobe,Secondary Ion Mass Spectrometry,Laser-Ablation ICP-MS,and Cathodoluminescence Study[J].European Journal of Mineralogy, 2003, 15(4): 747-763. doi: 10.1127/0935-1221/2003/0015-0747

[8]

Danyushevsky L, Robinson P, Gilbert S, et al. Routine Quantitative Multi-element Analysis of Sulphide Minerals by Laser Ablation ICP-MS:Standard Development and Consideration of Matrix Effects[J].Geochemistry:Exploration,Environment,Analysis, 2011, 11: 51-60. doi: 10.1144/1467-7873/09-244

[9]

Ding L, Yang G, Xia F, et al. A LA-ICP-MS Sulphide Calibration Standard Based on a Chalcogenide Glass[J].Mineralogical Magazine, 2011, 75(2): 279-287. doi: 10.1180/minmag.2011.075.2.279

[10]

吴石头, 王亚平, 许春雪, 等. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 2015, 34(5): 503-511.

Wu S T, Wang Y P, Xu C X, et al. Research Progress on Reference Materials for in situ Elemental Analysis by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2015, 34(5): 503-511.

[11]

Dare S A S, Barnes S J, Beaudoin G, et al. Variation in Trace Element Content of Magnetite Crystallized from a Fractionating Sulfide Liquid,Sudbury,Canada:Implications for Provenance Discrimination[J].Geochimica et Cosmochimica Acta, 2012, 88: 27-50. doi: 10.1016/j.gca.2012.04.032

[12]

Gao J F, Zhou M F, Lightfoot P C, et al. Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit,Xinjiang,Northwestern China[J].Economic Geology, 2013, 108: 1833-1848. doi: 10.2113/econgeo.108.8.1833

[13]

Nadoll P, Angerer T, Mauk J L, et al. The Chemistry of Hydrothermal Magnetite:A Review[J].Ore Geology Reviews, 2014, 61: 1-32. doi: 10.1016/j.oregeorev.2013.12.013

[14]

Liu P P, Zhou M F, Chen W T, et al. In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:Fe-Ti-(V) Oxide-bearing Mafic-Ultramafic Layered Intrusions of the Emeishan Large Igneous Province,SW China[J].Ore Geology Reviews, 2015, 65: 853-871. doi: 10.1016/j.oregeorev.2014.09.002

[15]

Huang X W, Zhou M F, Qi L, et al. Re-Os Isotopic Ages of Pyrite and Chemical Composition of Magnetite from the Cihai Magmatic-hydrothermal Fe Deposit,NW China[J].Mineralium Deposita, 2013, 48(8): 925-946. doi: 10.1007/s00126-013-0467-2

[16]

Huang X W, Gao J F, Qi L, et al. In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite and Re-Os Dating of Pyrite:The Tianhu Hydrothermally Remobilized Sedimentary Fe Deposit,NW China[J].Ore Geology Reviews, 2015, 65: 900-916. doi: 10.1016/j.oregeorev.2014.07.020

[17]

Huang X W, Zhou M F, Qiu Y Z, et al. In-situ LA-ICP-MS Trace Elemental Analyses of Magnetite:The Bayan Obo Fe-REE-Nb Deposit,North China[J].Ore Geology Reviews, 2015, 65: 884-899. doi: 10.1016/j.oregeorev.2014.09.010

[18]

Chen W T, Zhou M F, Gao J F, et al. Geochemistry of Magnetite from Proterozoic Fe-Cu Deposits in the Kangdian Metallogenic Province,SW China[J].Mineralium Deposita, 2015, 50(7): 795-809. doi: 10.1007/s00126-014-0575-7

[19]

Nadoll P, Mauk J L, Leveille R A, et al. Geochemistry of Magnetite from Porphyry Cu and Skarn Deposits in the Southwestern United States[J].Mineralium Deposita, 2015, 50(4): 493-515. doi: 10.1007/s00126-014-0539-y

[20]

Dupuis C, Beaudoin G. Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types[J].Mineralium Deposita, 2011, 46(3): 1-17.

[21]

Dare S A S, Barnes S J, Beaudoin G, et al. Trace Elements in Magnetite as Petrogenetic Indicators[J].Mineralium Deposita, 2014, 49(7): 785-796. doi: 10.1007/s00126-014-0529-0

[22]

Huang X, Qi L, Meng Y, et al. Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami Region,Eastern Tianshan Orogenic Belt,NW China[J].Acta Geologica Sinica (English Edition), 2014, 88(1): 176-195. doi: 10.1111/acgs.2014.88.issue-1

[23]

Boutroy E, Dare S A S, Beaudoin G, et al. Magnetite Composition in Ni-Cu-PGE Deposits Worldwide and Its Application to Mineral Exploration[J].Journal of Geochemical Exploration, 2014, 145: 64-81. doi: 10.1016/j.gexplo.2014.05.010

[24]

Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, et al. Partial Least Squares-Discriminant Analysis of Trace Element Compositions of Magnetite from Various VMS Deposit Subtypes:Application to Mineral Exploration[J].Ore Geology Reviews, 2016, 78: 388-408. doi: 10.1016/j.oregeorev.2016.04.014

[25]

Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, et al. Principal Component Analysis of Magnetite Composition from Volcanogenic Massive Sulfide Deposits:Case Studies from the Izok Lake (Nunavut,Canada) and Halfmile Lake (New Brunswick,Canada) Deposits[J].Ore Geology Reviews, 2016, 72: 60-85. doi: 10.1016/j.oregeorev.2015.06.023

[26]

Nadoll P, Koenig A E. LA-ICP-MS of Magnetite:Methods and Reference Materials[J].Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1872-1877. doi: 10.1039/c1ja10105f

[27]

张德贤, 戴塔根, 胡毅, 等. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨[J]. 岩矿测试, 2012, 31(1): 120-126.

Zhang D X, Dai T G, Hu Y, et al. Analysis of Trace Elements in Magnetites Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 120-126.

[28]

陈华勇, 韩金生. 磁铁矿单矿物研究现状、存在问题和研究方向[J]. 矿物岩石地球化学通报, 2015, 34(4): 724-730.

Chen H Y, Han J S. Study of Magnetite:Problems and Future[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(4): 724-730.

[29]

Leach A M, Hieftje G M. Methods for Shot-to-Shot Normalization in Laser Ablation with an Inductively Coupled Plasma Time-of-Flight Mass Spectrometer[J].Journal of Analytical Atomic Spectrometry, 2000, 15(9): 1121-1124. doi: 10.1039/b001968m

[30]

Leach A M, Hieftje G M. Identification of Alloys Using Single Shot Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry, 2002, 17(8): 852-857. doi: 10.1039/b203523p

[31]

Latkoczy C, Müller Y, Schmutz P, et al. Quantitative Element Mapping of Mg Alloys by Laser Ablation ICP-MS and EPMA[J].Applied Surface Science, 2005, 252(1): 127-132. doi: 10.1016/j.apsusc.2005.02.040

[32]

Halicz L, Günther D. Quantitative Analysis of Silicates Using LA-ICP-MS with Liquid Calibration[J].Journal of Analytical Atomic Spectrometry, 2004, 19(12): 1539-1545. doi: 10.1039/B410132D

[33]

Guillong M, Hametner K, Reusser E, et al. Preliminary Characterisation of New Glass Reference Materials (GSA-1G,GSC-1G,GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using 193 nm,213 nm and 266 nm Wavelengths[J].Geostandards and Geoanalytical Research, 2005, 29(3): 315-331. doi: 10.1111/ggr.2005.29.issue-3

[34]

Liu Y, Hu Z, Gao S, et al. In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[35]

Guillong M, Günther D. Effect of Particle Size Distri-bution on ICP-induced Elemental Fractionation in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry, 2002, 17(8): 831-837. doi: 10.1039/B202988J

[36]

Jackson S E, Günther D. The Nature and Sources of Laser Induced Isotopic Fractionation in Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry, 2003, 18(3): 205-212. doi: 10.1039/b209620j

[37]

Longerich H P, Jackson S E, Günther D, et al. Laser Ablation Inductively Coupled Plasma Mass Spectrometric Transient Signal Data Acquisition and Analyte Concentration Calculation[J].Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899-904. doi: 10.1039/JA9961100899

[38]

Raju P V S,Barnes S J,Savard D.Using Magnetite as an Indicator Mineral,Step 1:Calibration of LA-ICP-MS[C]//Proceedings of 11th International Platinum Symposium.Ontario:Ontario Geological Survey,2010:439-442.

[39]

Hu H, Lentz D, Li J W, et al. Reequilibration Processes in Magnetite from Iron Skarn Deposits[J].Economic Geology, 2015, 110(1): 1-8. doi: 10.2113/econgeo.110.1.1

[40]

Hu H, Li J W, Lentz D, et al. Dissolution-Reprecipitation Process of Magnetite from the Chengchao Iron Deposit:Insights into Ore Genesis and Implication for in-situ Chemical Analysis of Magnetite[J].Ore Geology Reviews, 2014, 57: 393-405. doi: 10.1016/j.oregeorev.2013.07.008

相似文献(共18条)

[1]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[2]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[3]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[4]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[5]

张德贤. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 2012, 31(1): 120-126.

[6]

徐鸿志, 柳小明, 郭伟, 姜劲锋, 胡圣虹. Li2B4O7熔融玻璃-激光剥蚀等离子体质谱法测定水系沉积物国家标准定值样品中微量元素. 岩矿测试, 2007, 26(3): 171-175.

[7]

杨秀清, 李厚民, 李立兴, 刘明军, 陈靖, 白云. 辽宁弓长岭铁矿床磁铁矿稀土元素特征及其地质意义. 岩矿测试, 2012, 31(6): 1058-1066.

[8]

王松君, 常平, . 电感耦合等离子体原子发射光谱法测定黄铁矿中微量元素. 岩矿测试, 2002, (4): 304-306.

[9]

丁帅帅, 郑刘根, 程桦. 电感耦合等离子体发射光谱-逐级化学提取法研究低硫煤矸石中微量元素的赋存状态及其环境效应. 岩矿测试, 2015, 34(6): 629-635. doi: 10.15898/j.cnki.11-2131/td.2015.06.005

[10]

梁细荣, 李献华. 激光探针等离子体质谱同时测定锆石微区铀—铅年龄及微量元素. 岩矿测试, 1999, (4): 253-258.

[11]

刘洪青, 孙月婷, 时晓露, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中14个微量元素. 岩矿测试, 2008, 27(6): 427-430.

[12]

姜贞贞, 刘高令, 王祝, 李明礼, 卓玛曲西, 邵蓓, 董锐, 王伟. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素. 岩矿测试, 2016, 35(5): 475-480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005

[13]

林伟龙, 王正海, 王娟, 蒋丽怡, 范朝焰. 电感耦合等离子体质谱测定灌木枝叶中微量元素的样品预处理方法研究. 岩矿测试, 2015, 34(4): 430-435. doi: 10.15898/j.cnki.11-2131/td.2015.04.009

[14]

韩江伟, 熊小林, 朱照宇, 吴金花. 等离子体质谱法测定玄武岩中微量元素三种样品预处理方法的比较. 岩矿测试, 2008, 27(5): 325-328.

[15]

熊英, 吴赫, 王龙山. 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除. 岩矿测试, 2011, 30(1): 7-11.

[16]

杨小莉, 杨小丽, 李小丹, 邵鑫, 杨梅. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素. 岩矿测试, 2014, 33(3): 321-326.

[17]

张莉娟, 徐铁民, 方蓬达, 魏双. 超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素. 岩矿测试, 2019, 38(2): 147-153. doi: 10.15898/j.cnki.11-2131/td.201712190195

[18]

刘先国, 方金东. 电感耦合等离子体原子发射光谱法测定硅铁中微量元素. 岩矿测试, 2002, (1): 63-65.

计量
  • PDF下载量(13)
  • 文章访问量(411)
  • HTML全文浏览量(31)
  • 被引次数(0)
目录

Figures And Tables

无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成

孟郁苗, 黄小文, 高剑峰, 戴智慧, 漆亮