【引用本文】 杨承帆, 杨守业, . 真空抽提结合同位素分析技术研究风化剖面中水的氢氧同位素组成特征[J]. 岩矿测试, 2016, 35(1): 69-74. doi: 10.15898/j.cnki.11-2131/td.2016.01.012
YANG Cheng-fan, YANG Shou-ye. Using Vacuum Extraction-Isotopic Analysis Technology to Study Hydrogen and Oxygen Isotopic Compositions of Water Extracted from Weathering Profile Sediments[J]. Rock and Mineral Analysis, 2016, 35(1): 69-74. doi: 10.15898/j.cnki.11-2131/td.2016.01.012

真空抽提结合同位素分析技术研究风化剖面中水的氢氧同位素组成特征

1. 

同济大学海洋与地球科学学院, 上海 200092

2. 

同济大学海洋地质国家重点实验室, 上海 200092

收稿日期: 2015-06-02  修回日期: 2015-12-17  接受日期: 2016-01-10

基金项目: 国家自然科学杰出青年科学基金资助项目(41225020);国家自然科学基金资助项目(41376049);"全球变化与海气相互作用"专项国际合作项目(GASI-GEOGE-03)

作者简介: 杨承帆, 博士研究生, 主要从事海洋地质学研究。E-mail:cfyang@tongji.edu.cn

通信作者: 杨守业, 博士, 教授, 主要从事沉积地球化学和海洋地质学研究。E-mail:syyang@tongji.edu.cn

Using Vacuum Extraction-Isotopic Analysis Technology to Study Hydrogen and Oxygen Isotopic Compositions of Water Extracted from Weathering Profile Sediments

1. 

School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

2. 

State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

Corresponding author: YANG Shou-ye, syyang@tongji.edu.cn

Received Date: 2015-06-02
Revised Date: 2015-12-17
Accepted Date: 2016-01-10

摘要:沉积物不同赋存态水作为地球表生过程水岩相互作用的产物, 其氢氧同位素组成对于探讨古气候、古环境演变有重要的意义。本文采用热重-真空抽提-液态水同位素测试三者联立技术, 提取湖南风化剖面样品不同赋存态水, 并测试其氢氧同位素组成。热重分析确立4段抽提温度区间:0~120℃、120~300℃、300~600℃和600~900℃; 除120~300℃及300~600℃抽提出的赋存态水性质无法确定外, 其余2个温度段赋存态水分别对应吸附水和结构水; 0~120℃提取的吸附水主要为现代大气降水的蒸发残余水。由于同位素平衡分馏的原因, 赋存态水与矿物晶格结合越紧密, 其氢同位素值越偏负, 氧同位素值越偏正。本研究方法可为地球表生过程和水循环研究提供依据。

关键词: 热重分析, 真空抽提, 水的赋存状态, 氢氧同位素, 沉积物, 风化剖面

Using Vacuum Extraction-Isotopic Analysis Technology to Study Hydrogen and Oxygen Isotopic Compositions of Water Extracted from Weathering Profile Sediments

KEY WORDS: thermogravimetry, vacuum extracted technology, different water properties, hydrogen and oxygen isotopes, sediment, weathering profile

本文参考文献

[1]

戚国庆, 黄润秋, 彭汉兴, 等. 水岩相互作用下结晶岩的矿物演化[J]. 矿物岩石, 2004, 24(1): 43-47.

Qi G Q, Huang R Q, Peng H X, et al. Evolution of Mineral under Interaction of Water and Crystalline Rock[J]. Journal of Mineralogy and Petrology, 2004, 24(1): 43-47.

[2]

沈照理, 王焰新, 郭华明, 等. 水-岩相互作用研究的机遇与挑战[J]. 地球科学——中国地质大学学报, 2012, 37(2): 207-219.

Shen Z L, Wang Y X, Guo H M, et al. Opportunities and Challenges of Water-Rock Interaction Studies[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(2): 207-219.

[3]

刘四兵, 黄思静, 沈忠民, 等. 砂岩中碳酸盐胶结物成岩流体演化和水岩作用模式——以川西孝泉-丰谷地区上三叠统须四段致密砂岩为例[J]. 中国科学(地球科学), 2014, 57(7): 1077-1092.

Liu S B, Huang S J, Shen Z M, et al. Diagenetic Fluid Evolution and Water-Rock Interaction Model of Carbonate Cements in Sandstone:An Example from the Reservoir Sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu Area, Sichuan Province, China[J]. Science China(Earth Sciences), 2014, 57(7): 1077-1092.

[4]

Cenki-Tok B, Chabaux F, Lemarchand D, et al. The Impact of Water-Rock Interaction and Vegetation on Calcium Isotope Fractionation in Soil-and Stream Waters of a Small, Forested Catchment(the Strengbach Case)[J].Geochimica et Cosmochimica Acta, 2009, 73(8): 2215-2228. doi: 10.1016/j.gca.2009.01.023

[5]

Yamaoka K, Matsukura S, Ishikawa T, et al. Boron Isotope Systematics of a Fossil Hydrothermal System from the Troodos Ophiolite, Cyprus:Water-Rock Interactions in the Oceanic Crust and Subseafloor Ore Deposits[J].Chemical Geology, 2015, 396: 61-73. doi: 10.1016/j.chemgeo.2014.12.023

[6]

Rosenau N A, Tabor N J. Oxygen and Hydrogen Isotope Compositions of Paleosol Phyllosilicates:Differential Burial Histories and Determination of Middle-Late Pennsylvanian Low-latitude Terrestrial Paleotemperatures[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392: 382-397. doi: 10.1016/j.palaeo.2013.09.020

[7]

Mix H T, Chamberlain C P. Stable Isotope Records of Hydrologic Change and Paleotemperature from Smectite in Cenozoic Western North America[J].Geochimica et Cosmochimica Acta, 2014, 141: 532-546. doi: 10.1016/j.gca.2014.07.008

[8]

顾雪祥, 刘丽, 董树义, 等. 山东沂南金铜铁矿床中的液态不混溶作用与成矿:流体包裹体和氢氧同位素证据[J]. 矿床地质, 2010, 29(1): 43-57.

Gu X X, Liu L, Dong S Y, et al. Immiscibility during Mineralization of Yinan Au-Cu-Fe Deposit, Shandong Province:Evidence from Fluid Inclusions and H-O Isotopes[J]. Mineral Deposits, 2010, 29(1): 43-57.

[9]

侯明兰, 蒋少涌, 沈昆, 等. 胶东蓬莱金矿区流体包裹体和氢氧同位素地球化学研究[J]. 岩石学报, 2007, 23(9): 2241-2256.

Hou M L, Jiang S Y, Shen K, et al. Fluid Inclusion and H-O Isotope Study of Gold Mineralization in the Penglai Gold Field, Eastern Shandong[J]. Acta Petrological Sinica, 2007, 23(9): 2241-2256.

[10]

Tabor N J, Montañez I P. Oxygen and Hydrogen Isotope Compositions of Permian Pedogenic Phyllosilicates:Development of Modern Surface Domain Arrays and Implications for Paleotemperature Reconstructions[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(1): 127-146.

[11]

Vitali F, Longstaffe F J, McCarthy P J, et al. Stable Isotopic Investigation of Clay Minerals and Pedogenesis in an Interfluve Paleosol from the Cenomanian Dunvegan Formation, NE British Columbia, Canada[J].Chemical Geology, 2002, 192(3): 269-287.

[12]

Hodell D A, Turchyn A V, Wiseman C J, et al. Late Glacial Temperature and Precipitation Changes in the Lowland Neotropics by Tandem Measurement of δ18O in Biogenic Carbonate and Gypsum Hydration Water[J].Geochimica et Cosmochimica Acta, 2012, 77: 352-368. doi: 10.1016/j.gca.2011.11.026

[13]

谭红兵, 孔娜, 张文杰, 等. 盐类矿物结晶水H和O同位素研究的科学意义与测定方法[J]. 河海大学学报(自然科学版), 2013, 41(4): 307-314.

Tan H B, Kong N, Zhang W J, et al. Scientific Significance of Study of Hydrogen and Oxygen Isotopes in Hydration Water of Salt Minerals and Determination Methods[J]. Journal of Hohai University(Natural Sciences), 2013, 41(4): 307-314.

[14]

Epstein S, Mayeda T. Variation of 18O Content of Waters from Natural Sources[J].Geochimica et Cosmochimica Acta, 1953, 4(5): 213-224. doi: 10.1016/0016-7037(53)90051-9

[15]

Boyer P D, Graves D J, Suelter C H, et al. Simple Procedure for Conversion of Oxygen of Orthophosphate or Water to Carbon Dioxide for Oxygen-18 Determination[J].Analytical Chemistry, 1961, 33(13): 1906-1909. doi: 10.1021/ac50154a036

[16]

Dugan Jr J P, Borthwick J, Harmon R S, et al. Guanidine Hydrochloride Method for Determination of Water Oxygen Isotope Ratios and the Oxygen-18 Fractionation between Carbon Dioxide and Water at 25 Degree[J].Analytical Chemistry, 1985, 57(8): 1734-1736. doi: 10.1021/ac00285a051

[17]

Viglino J A, Harmon R S, Borthwick J, et al. Stable-isotope Evidence for a Magmatic Component in Fumarole Condensates from Augustine Volcano, Cook Inlet, Alaska, USA[J].Chemical Geology, 1985, 49(1): 141-157.

[18]

Clayton R N, Mayeda T K. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis[J].Geochimica et Cosmochimica Acta, 1963, 27(1): 43-52. doi: 10.1016/0016-7037(63)90071-1

[19]

Brand W A, Tegtmeyer A R, Hilkert A, et al. Compound-specific Isotope Analysis:Extending toward 15N/14N and 18O/16O[J].Organic Geochemistry, 1994, 21(6): 585-594.

[20]

Bigeleisen J, Perlman M L, Prosser H C, et al. Conversion of Hydrogenic Materials to Hydrogen for Isotopic Analysis[J].Analytical Chemistry, 1952, 24(8): 1356-1357. doi: 10.1021/ac60068a025

[21]

Coleman M L, Shepherd T J, Durham J J, et al. Reduction of Water with Zinc for Hydrogen Isotope Analysis[J].Analytical Chemistry, 1982, 54(6): 993-995. doi: 10.1021/ac00243a035

[22]

Lupker M, France-Lanord C, Galy V, et al. Predominant Floodplain over Mountain Weathering of Himalayan Sediments(Ganga Basin)[J].Geochimica et Cosmochimica Acta, 2012, 84: 410-432. doi: 10.1016/j.gca.2012.02.001

[23]

潘兆橹编著.结晶学与矿物学[M].北京:地质出版社,1985.

Pan Z L.Crystallography and Mineralogy[M].Beijing:Geological Publishing House,1985.

[24]

Horbe A M C. Oxygen and Hydrogen Isotopes in Pedogenic Minerals-Implications for Paleoclimate Evolution in Amazonia during the Cenozoic[J].Geoderma, 2011, 163(3): 178-184.

[25]

Savin S M, Epstein S. The Oxygen and Hydrogen Isotope Geochemistry of Clay Minerals[J].Geochimica et Cosmochimica Acta, 1970, 34(1): 25-42. doi: 10.1016/0016-7037(70)90149-3

[26]

Bauer K K, Vennemann T W. Analytical Methods for the Measurement of Hydrogen Isotope Composition and Water Content in Clay Minerals by TC/EA[J].Chemical Geology, 2014, 363: 229-240. doi: 10.1016/j.chemgeo.2013.10.039

[27]

黄煌, 章新平, 李广, 等. 长沙地区蒸发皿水体蒸发过程中稳定同位素的变化特征[J]. 热带地理, 2014, 34(6): 776-782.

Huang H, Zhang X P, Li G, et al. Variation of Stable Isotopes in Pan Water Evaporation Process in Changsha[J]. Tropical Geography, 2014, 34(6): 776-782.

[28]

黄一民, 章新平, 唐方雨, 等. 长沙大气降水中稳定同位素变化及过量氘指示水汽来源[J]. 自然资源学报, 2013, 28(11): 1945-1954. doi: 10.11849/zrzyxb.2013.11.011

Huang Y M, Zhang X P, Tang F Y, et al. Variations of Precipitation Stable Isotope and Vapor Origins Revealed by Deuterium Excess in Changsha[J].Journal of Natural Resources, 2013, 28(11): 1945-1954. doi: 10.11849/zrzyxb.2013.11.011

[29]

Michener R,Lajtha K.Stable Isotopes in Ecology and Environmental Science[M].Hoboken:John Wiley & Sons,2008.

[30]

尹观,倪师军编著.同位素地球化学[M].北京:地质出版社,2009.

Yin G,Ni S J.Isotope Geochemistry[M].Beijing:Geological Publishing House,2009.

[31]

Clark I D,Fritz P.Environmental Isotopes in Hydrogeo-logy[M].Boca Raton:CRC Press,1997.

[32]

Hall A M, Gilg H A, Fallick A E, et al. Kaolins in Gravels and Saprolites in North-East Scotland:Evidence from Stable H and O Isotopes for Palaeocene Miocene Deep Weathering[J].Palaeogeography, Palaeoclima-tology, Palaeoecology, 2015, 424: 6-16. doi: 10.1016/j.palaeo.2015.02.019

相似文献(共20条)

[1]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[2]

张剑, 胡高伟, 刁少波, 陈强, 岳英杰, 业渝光. 多孔介质中水合物的热物理参数测量. 岩矿测试, 2008, 27(3): 165-168.

[3]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[4]

孙江, 饶文波, 孙雪, 周慧芳, 苏治国. 新型沙漠土壤水分真空抽提装置的研制与应用. 岩矿测试, 2012, 31(5): 842-848.

[5]

张琳, 刘福亮, 贾艳琨, 刘君. 水中系列氢氧同位素标准物质的研制. 岩矿测试, 2013, 32(5): 7/80-784.

[6]

杨会, 王华, 应启和, 林宇, 涂林玲. 不同检测方法对氢氧同位素分馏的影响. 岩矿测试, 2012, 31(2): 225-228.

[7]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[8]

魏峰, 沈小明, 陈海英, 沈加林. 土壤和沉积物中22种有机氯农药和8种多氯联苯的气相色谱分析. 岩矿测试, 2013, 32(6): 952-958.

[9]

许春雪, 袁建, 王亚平, 王苏明, 代阿芳. 沉积物中磷的赋存形态及磷形态顺序提取分析方法. 岩矿测试, 2011, 30(6): 785-794.

[10]

周文勤. 加速器质谱分析超痕量铍同位素研究深海沉积物沉积速率和多金属结核生长速率 . 岩矿测试, 1997, (2): 109-117.

[11]

佟玲, 杨佳佳, 吴淑琪, 张玲金. 沉积物样品中干扰物的去除及多种持久性有机污染物气相色谱分析. 岩矿测试, 2011, 30(5): 601-605.

[12]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[13]

张于平, 瞿文川. 太湖沉积物中重金属的测定及环境意义. 岩矿测试, 2001, (1): 34-36.

[14]

葛晓立, 刘浏, 徐清, 刘晓端, 王英华. 密云水库沉积物中磷的形态和分布特征. 岩矿测试, 2003, (2): 81-85.

[15]

尚文郁, 孙青, 凌媛, 谢曼曼, 岑况. 近红外漫反射光谱在沉积物化学成分分析中的研究进展. 岩矿测试, 2012, 31(4): 582-590.

[16]

任冬, 周小琳, 宗有银, 张廷忠. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘. 岩矿测试, 2019, 38(6): 734-740. doi: 10.15898/j.cnki.11-2131/td.201901170009

[17]

刘霞, 徐青, 史淼森, 余晓平, 郭亚飞, 邓天龙. 沱江流域沉积物中氮赋存状态及其垂向分布特征. 岩矿测试, 2018, 37(3): 320-326. doi: 10.15898/j.cnki.11-2131/td.201801250012

[18]

张月琴, 罗爱芹, 罗俊凌. 超声与振荡提取沉积物中松散结合态磷的比较. 岩矿测试, 2005, (3): 193-196.

[19]

陈明, 黄怀曾, 陈红军, 冯流. 永定河沉积物中磷的存在形态及其指示意义. 岩矿测试, 2005, (3): 176-180.

[20]

冯朝军, 潘建明, 王红群, 皮业华. 微波消解-气相色谱法测定沉积物中的木质素. 岩矿测试, 2011, 30(1): 23-26.

计量
  • PDF下载量(9)
  • 文章访问量(6279)
  • HTML全文浏览量(173)
  • 被引次数(0)
目录

Figures And Tables

真空抽提结合同位素分析技术研究风化剖面中水的氢氧同位素组成特征

杨承帆, 杨守业