【引用本文】 李凤春, 侯明兰, 栾日坚, 等. 电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用[J]. 岩矿测试, 2016, 35(1): 17-23. doi: 10.15898/j.cnki.11-2131/td.2016.01.004
LI Feng-chun, HOU Ming-lan, LUAN Ri-jian, et al. Optimization of Analytical Conditions for LA-ICP-MS and Its Application to Zircon U-Pb Dating[J]. Rock and Mineral Analysis, 2016, 35(1): 17-23. doi: 10.15898/j.cnki.11-2131/td.2016.01.004

电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用

中国冶金地质总局山东局测试中心, 山东省地质分析测试工程实验室, 山东 济南 250014

收稿日期: 2015-09-14  修回日期: 2016-01-06  接受日期: 2016-01-10

基金项目: 山东省地勘费项目"LA-ICP-MS锆石固体原位微量元素分析和U-Pb测年方法研究"(鲁勘字(2011)143号)

作者简介: 李凤春, 硕士, 工程师, 主要研究方向为地球化学。E-mail:lfc508@163.com。

Optimization of Analytical Conditions for LA-ICP-MS and Its Application to Zircon U-Pb Dating

The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Shandong Geological Analysis Project Laboratory, Jinan 250014, China

Received Date: 2015-09-14
Revised Date: 2016-01-06
Accepted Date: 2016-01-10

摘要:在LA-ICP-MS测量中, 样品是否能够均匀地由激光样品池运送到等离子体质谱仪炬管是影响分析数据精度的关键。本研究对样品剥蚀池和剥蚀气溶胶传输进行改进, 在LA和ICP-MS之间添加一套激光剥蚀脉冲平滑系统将LA剥蚀气溶胶转化为连续送样模式, 并使用多通道旋转式样品池消除样品在激光剥蚀池中的位置效应, 显著提高了测量信号的稳定性。在优化条件下, 以标准锆石91500作外标, 测量锆石标样GJ-1、Plešovice、TEMORA、QH的U-Pb年龄分别为604±3 Ma(2δ, MSWD=1.2)、337±1 Ma(2δ, MSWD=1.18)、419±3 Ma(2δ, MSWD=0.15) 和161±1 Ma(2δ, MSWD=0.6), 与前人报道结果在误差范围内一致; 以NIST610作外标, 玻璃标样NIST612和BHVO-2G大部分微量稀土元素的测量值与参考值的相对偏差均在10%以内; 测量新疆天山造山带锆石样品的207Pb/206Pb加权年龄与SHRIMP结果基本吻合。本方法可有效降低元素分馏效应, 提高测量精度。

关键词: 激光剥蚀电感耦合等离子体质谱, 测量数据稳定性, 多通道旋转式样品池, 激光剥蚀脉冲平滑系统

Optimization of Analytical Conditions for LA-ICP-MS and Its Application to Zircon U-Pb Dating

KEY WORDS: Laser Ablation Inductively Coupled Plasma-Mass Spectrometry, measurement data stability, multi-channel rotary sampling cell, laser ablation pulse flowing system

本文参考文献

[1]

Arevalo Jr R, Bellucci J, McDonough W F, et al. GGR Biennial Review:Advances in Laser ablation and Solution ICP-MS from 2008 to 2009 with Particular Emphasis on Sensitivity Enhancements, Mitigation of Fractionation Effects and Exploration of New Applications[J].Geostandards and Geoanalytical Research, 2010, 34: 327-341. doi: 10.1111/ggr.2011.34.issue-4

[2]

Jeffries T E, Jackson S E, Longerich H P J, et al. Application of a Frequency Quintupled Nd:YAG Source(λ=213 nm) for Laser Ablation Inductively Coupled Plasma Mass Spectrometric Analysis of Minerals[J].Journal of Analytical Atomic Spectrometry, 1998, 13: 935-940. doi: 10.1039/A801328D

[3]

Koch J, Walle M, Pisonero J, et al. Performance Chara-cteristics of Ultra-violet Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry at~265 and~200 nm[J].Journal of Analytical Atomic Spectrometry, 2006, 21: 930-945.

[4]

Chen Z X, Doherty W, Gregoire D C J, et al. Application of Laser Sampling Microprobe Inductively Coupled Plasma Mass Spectrometry to the in situ Trace Element Analysis of Selected Geological Materials[J].Journal of Analytical Atomic Spectrometry, 1997, 12: 653-659. doi: 10.1039/A606599F

[5]

Güther D, Frischknecht R, Heinrich C A, et al. Capa-bilities of an Argon Fluoride 193 nm Excimer Laser for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Microanalysis of Geological Materials[J].Journal of Analytical Atomic Spectrometry, 1997, 12: 939-944. doi: 10.1039/A701423F

[6]

Wanner B, Moor C, Richner P, et al. Laser Ablation Inductively Coupled Plasma Mass Spectrometry LA-ICP-MS for Spatially Resolved Trace Element Determination of Solids Using an Autofocus System[J].Spectrochimica Acta Part B, 1999, 54: 289-298. doi: 10.1016/S0584-8547(98)00245-6

[7]

Güther D, Heinrich C A. Enhanced Sensitivity in Laser Ablation-ICP Mass Spectrometry Using Helium-Argon Mixtures as Aerosol Carrier[J].Journal of Analytical Atomic Spectrometry, 1999, 14: 1363-1368. doi: 10.1039/A901648A

[8]

Hirata T J. Soft Ablation Technique for Laser Ablation-Inductively Coupled Plasma Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry, 1997, 12: 1337-1342. doi: 10.1039/A704169A

[9]

靳兰兰, 张宏飞, 胡圣虹, 等. 双气流路-激光剥蚀电感耦合等离子体质谱测定铅同位素比值[J]. 分析化学, 2007, 35(2): 191-195.

Jin L L, Zhang H F, Hu S S, et al. Dual Flow Path-Laser Ablation Inductively Coupled Plasma Mass Spectrometry in Testing Lead Isotope Ratios[J]. Analytical Chemistry, 2007, 35(2): 191-195.

[10]

宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 2002, 48((Supplement)): 26-30.

Song B, Zhang Y H, Wan Y S, et al. Production, Age Determination and Related Phenomena Discussion of SHRIMP Zircon Sample Target[J]. Geological Review, 2002, 48((Supplement)): 26-30.

[11]

Ludwing K R. .ISOPLOT 3.0-A Geochronological Tool Kit for Microsoft Excel[J]..Berkeley:Berkeley Geochro-nology Center, 2008, .

[12]

Anderson T. Correction of Common Lead in U-Pb Zircon Ages that do not Report 204Pb[J].Chemical Geology, 2002, 192: 59-79. doi: 10.1016/S0009-2541(02)00195-X

[13]

Liu Y S, Hu Z C, Gao S, et al. Insitu Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[14]

Wiedenbeck M, Alle P, Corfu F, et al. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element, and REE Analyses[J].Geostandards Newsletter, 1995, 19: 1-23.

[15]

Li X H, Liu Y, Li Q, et al. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization[J].Chemical Geology, 2009, .

[16]

Black L P, Kamo S L, Allen C M, et al. TEMORA 1:A New Zircon Standard for Phanerozoic U-Pb Geochro-nology[J].Chemical Geology, 2003, 200: 155-170. doi: 10.1016/S0009-2541(03)00165-7

[17]

Black L P, Kamo S L, Williams I S, et al. The Application of SHRIMP to Phanerozoic Geochronology:A Critical Appraisal of Four Zircon Standards[J].Chemical Geology, 2003, 200: 171-188. doi: 10.1016/S0009-2541(03)00166-9

[18]

柳小明, 高山, 第五春荣, 等. 单颗粒锆石的20μm小斑束原位微区LA-ICP-MSU-Pb年龄和微量元素的同时测定[J]. 科学通报, 2007, 52(2): 228-235.

Liu X M, Gao S, Diwu C R, et al. Simultaneous in situ Determination of U-Pb Age and Trace Elements in Zircon by LA-ICP-MS in 20μm Spot Size[J]. Chinese Science Bulletin, 2007, 52(2): 228-235.

[19]

谢烈文, 张艳斌, 张辉煌, 等. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J]. 科学通报, 2008, 53(2): 220-228.

Xie L W, Zhang Y B, Zhang H H, et al. Simultaneous in situ Determination of U-Pb Age and Trace Elements in Zricon[J]. Chinese Science Bulletin, 2008, 53(2): 220-228.

[20]

Sláma J, Košler J, Condon D J, et al. Plešovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis[J].Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005

[21]

Jochum K P, Stoll B, Herwig K, et al. MPI-DING Reference Glasses for in-situ Microanalysis:New Reference Values for Element Concentrations and Isotope Ratios[J].Geochemistry, Geophysics, Geosystems, 2006, 7(2).

[22]

Jochum K P, Stoll B. Chapter 10:Reference Material for Elemental and Isotopic Analyses by LA-(MC)-ICP-MS:Successes and Outstanding Needs[J].Vancouver:Mineralogical Association of Canada:: 147-168.

[23]

US GS. Geochemical Reference Materials and Certificates[J].http://minerals.cr.usgs.gov/geo_chem_stand/, 2002, .

[24]

Ge R F, Zhu W B, Wilde S A, et al. Synchronous Crustal Growth and Reworking Recorded in Late Paleoproterozoic Granitoids in the Northern Tarim Craton:In situ Zircon U-Pb-Hf-O Isotopic and Geochemical Constraints and Tectonic Implications[J].Geological Society of America Bulletin, 2015, .

[25]

Yuan H L, Gao S, Dai M N, et al. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser Ablation Quadrupole and Multiple Collector ICP-MS[J].Chemical Geology, 2008, 247: 100-118. doi: 10.1016/j.chemgeo.2007.10.003

相似文献(共18条)

[1]

范晨子, 胡明月, 赵令浩, 孙冬阳, 蒯丽君, 蔡炳贵, 詹秀春. 激光剥蚀电感耦合等离子体质谱分析石笋样品中多元素比值及45种元素含量. 岩矿测试, 2013, 32(3): 383-391.

[2]

闫巧娟, 魏小燕, 叶美芳, 赵慧博, 周宁超. 激光剥蚀电感耦合等离子体质谱-电子探针分析白山堂铜矿中的黄铁矿成分. 岩矿测试, 2016, 35(6): 658-666. doi: 10.15898/j.cnki.11-2131/td.2016.06.012

[3]

赵令浩, 詹秀春, 胡明月, 范晨子, 孙冬阳, 刘传宝. 单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用. 岩矿测试, 2013, 32(1): 1-14.

[4]

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

[5]

吴石头, 王亚平, 詹秀春, AndreasKronz, KlausSimon, 许春雪, 田欢. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究. 岩矿测试, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007

[6]

范晨子, 胡明月, 赵令浩, 孙冬阳, 詹秀春. 锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展. 岩矿测试, 2012, 31(1): 29-46.

[7]

孙冬阳, 王广, 范晨子, 赵令浩, 胡明月, 樊兴涛, 袁继海, 詹秀春. 激光剥蚀-电感耦合等离子体质谱线扫描技术的空间分辨率研究. 岩矿测试, 2012, 31(1): 127-131.

[8]

肖志斌, 柳小明, 李正辉, 张红. 激光剥蚀-电感耦合等离子体质谱准确测定锆石中钛的含量. 岩矿测试, 2012, 31(2): 229-233.

[9]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[10]

袁继海, 詹秀春, 樊兴涛, 胡明月. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展. 岩矿测试, 2011, 30(2): 121-130.

[11]

侯可军, 秦燕, 李延河, 范昌福. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析. 岩矿测试, 2013, 32(4): 547-554.

[12]

张德贤. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 2012, 31(1): 120-126.

[13]

金献忠, 谢健梅, 陈建国. 激光剥蚀电感耦合等离子体质谱法测定金属镀锡层的厚度. 岩矿测试, 2015, 34(3): 286-291. doi: 10.15898/j.cnki.11-2131/td.2015.03.004

[14]

付宇, 孙晓明, 熊德信. 激光剥蚀-电感耦合等离子体质谱法对白钨矿中稀土元素的原位测定. 岩矿测试, 2013, 32(6): 875-882.

[15]

孟郁苗, 黄小文, 高剑峰, 戴智慧, 漆亮. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成. 岩矿测试, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004

[16]

李爱荣, 徐鸿志, 胡圣虹, 帅琴, 靳兰兰. 激光剥蚀等离子体质谱分析中激光剥蚀参数对信号响应的影响. 岩矿测试, 2005, (3): 171-175.

[17]

徐鸿志, 柳小明, 郭伟, 姜劲锋, 胡圣虹. Li2B4O7熔融玻璃-激光剥蚀等离子体质谱法测定水系沉积物国家标准定值样品中微量元素. 岩矿测试, 2007, 26(3): 171-175.

[18]

JOCHUM Klaus Peter, STOLL Brigitte, FRIEDRICH Jon M, AMINI Marghaleray, BECKER Stefan, DüCKING Marc, EBEL Denton S, ENZWEILER Jacinta, 胡明月, KUZMIN Dmitry, MERTZKRAUS Regina, MüLLER Werner E G, REGNERY Julia, SOBOLEV Alexander, 王晓红, 詹秀春. 激光剥蚀-等离子体质谱技术及其在地球化学宇宙化学和环境研究中的应用. 岩矿测试, 2009, 28(1): 53-68.

计量
  • PDF下载量(26)
  • 文章访问量(351)
  • HTML全文浏览量(12)
  • 被引次数(0)
目录

Figures And Tables

电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用

李凤春, 侯明兰, 栾日坚, 林培军, 李增胜, 赵龙, 王继林, 徐爽