【引用本文】 李刚, 姚玉玲, 李婧祎, 等. 铌钽元素分析技术新进展[J]. 岩矿测试, 2018, 37(1): 1-14. doi: 10.15898/j.cnki.11-2131/td.201512030223
LI Gang, YAO Yu-ling, LI Jing-yi, et al. Progress of Niobium and Tantalum Analytical Technology[J]. Rock and Mineral Analysis, 2018, 37(1): 1-14. doi: 10.15898/j.cnki.11-2131/td.201512030223

铌钽元素分析技术新进展

1. 

中国地质科学院矿产综合利用研究所, 四川 成都 610041

2. 

四川赛纳斯分析检测有限公司, 四川 成都 610023

3. 

成都理工大学材料与化学化工学院, 四川 成都 610059

收稿日期: 2016-12-03  修回日期: 2017-11-20  接受日期: 2017-12-11

基金项目: 中国地质调查局地质调查项目——川西稀有金属矿集区综合地质调查工作项目(DD20160074)

作者简介: 李刚, 教授级高级工程师, 从事光谱分析研究。E-mail:ligang1718@vip.sina.com

Progress of Niobium and Tantalum Analytical Technology

1. 

Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China

2. 

Sichuan SNS Analysis and Detection Co. Ltd., Chengdu 610023, China

3. 

College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

Received Date: 2016-12-03
Revised Date: 2017-11-20
Accepted Date: 2017-12-11

摘要:铌钽是发展新兴产业所需的功能性和结构性材料,铌钽矿产是国家重点支持的战略新兴矿产资源,开展相关物料中铌钽的分析技术研究具有重要意义。由于铌和钽的物理化学性质十分相似,彼此难以分离,且易水解,加之地质样品分解困难,因此铌和钽的分析测试一直困扰着分析工作者。本文重点对铌钽元素分析中的样品前处理技术和现代分析测试技术进行综述。样品前处理是铌钽分析的关键环节,结合分析方法和样品特性,选择合理的样品分解和分离富集方法是准确测定铌钽的前提。仪器分析是现代分析测试技术的主流,电感耦合等离子体发射光谱/质谱法(ICP-OES/MS)是目前测定铌钽应用最多的方法,需要解决共存组分的干扰、基体效应和盐类影响等问题。激光剥蚀(LA)技术、X射线荧光光谱法(XRF)和中子活化分析法(NAA)采用固体进样,避免了前期样品处理的繁琐步骤和杂质的引入,是铌钽元素分析发展的方向。

关键词: , , 样品前处理方法, 电感耦合等离子体发射光谱/质谱法, X射线荧光光谱法, 中子活化分析法

Progress of Niobium and Tantalum Analytical Technology

KEY WORDS: niobium, tantalum, sample preparation methods, Inductively Coupled Plasma-Optical Emission Spectrometry/Mass Spectrometry, X-ray Fluorescence Spectrometry, Neutron Activation Analysis

Highlights

· The applicability and limitation of a variety of pre-treatment technologies for niobium and tantalum were systematically analyzed, such as acid dissolution, and alkali fusion.

· The application status of modern testing techniques such as ICP-OES, ICP-MS, XRF, and Neutron Activation Analysis in niobium and tantalum analysis were comprehensively reviewed.

· The development trend of niobium and tantalum analysis was prospected.

本文参考文献

[1] Gunn G. Critical Metals Handbook:15.Tantalum and Niobium[M] . USA: American Geophysical Union, 2014: 361-382.
[2]

王登红, 王瑞江, 李建康, 等. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 2013, 40(2): 361-370.

Wang D H, Wang R J, Li J K, et al. The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources[J]. Geology in China, 2013, 40(2): 361-370.

[3]

岩石矿物分析编委会. 岩石矿物分析(第四版第三分册)[M] . 北京: 地质出版社, 2011: 378-380.

[4]

有色金属工业分析丛书编辑委员会. 难熔金属和稀散金属冶金分析[M] . 北京: 冶金工业出版社, 1992: 63-133.

The Editorial Committee of Nonferrous Metal Industry Analysis Series . Refractory Metal and Rare Metal Metallurgical Analysis[M] . Beijing: Metallurgical Industry Press, 1992: 63-133.
[5]

Nagiev K D. Spectrophotometric determination of sim-ultaneously present niobium and tantalum[J].Journal of Analytical Chemistry, 2004, 59(10): 930-934. doi: 10.1023/B:JANC.0000043907.91045.f0

[6]

童春临, 刘勇胜, 胡圣虹, 等. ICP-MS分析用地质样品制备过程中Nb、Ta等元素的特殊化学行为[J]. 地球化学, 2009, 38(1): 43-52.

Tong C L, Liu Y S, Hu S H, et al. Specific chemical behavior of Nb and Ta in geological sample preparation with PTFE bomb for ICP-MS analysis[J]. Geochimica, 2009, 38(1): 43-52.

[7]

Li D L, Hu X Y, Wang H Z, et al. Separation and simultaneous determination of niobium and tantalum in steel by reversed-phase high-performance liquid chromatography using 2-(2-pyridylazo)-5-diethylamino phenol as a pre-column derivatizing reagent[J].Talanta, 2004, 63(2): 233-237. doi: 10.1016/j.talanta.2003.09.028

[8]

Li G P, Wei Q Y, Huang Z J, et al. Simultaneous determination of vanadium, niobium and tantalum by high-performance liquid chromatography equipped with on-line enrichment using 2-[J].Microchimica Acta, 2007, 158(1-2): 95-102. doi: 10.1007/s00604-006-0667-x

[9]

Kutyrev I M, Nechepurenko G N, Gaidukova Y A, et al. Ex-traction-spectrophotometric determination of niobium in magnetic alloys[J].Inorganic Materials, 2014, 50(14): 1405-1407. doi: 10.1134/S0020168514140088

[10]

崔爱端, 杜梅, 刘晓杰, 等. ICP-AES法测定稀土金属中的钛、钼、钨、铌和钽[J]. 稀土, 2005, 26(1): 57-59.

Cui A D, Du M, Liu X J, et al. Determing method for titanium, molybdenum, tungsten, niobium and tantalum in rare earth metals[J]. Chinese Rare Earths, 2005, 26(1): 57-59.

[11]

Cheng Y. Determination of alloy and impurity elements in the WC-Co based cemented carbide by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Applied Mechanics and Materials, 2012, 271-272: 222-226. doi: 10.4028/www.scientific.net/AMM.271-272

[12]

Vachirapatama N, Doble P, Haddad P R, et al. Separation and determination of niobium(Ⅴ) and tantalum(Ⅴ) as 2-(5-bromo-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol citrate ternary complexes in geological samples using ion interaction high-performance liquid chromatography[J]. Analytica Chimica Acta, 2000, 409(1): 35-43.

[13]

刘卫, 栾亚兰, 仵丽萍, 等. 电感耦合等离子体光谱法测定锂辉石选矿产品中铌和钽[J]. 理化检验(化学分册), 2006, 42(9): 715-716.

Liu W, Luan Y L, Wu L P, et al. ICP-AES determination of Nb and Ta in products of oredressing of spodumene[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2006, 42(9): 715-716.

[14]

赵朝辉, 雷勇, 易建春, 等. ICP-MS同时测定地球化学样品中的铌钽[J]. 矿产综合利用, 2012, (6): 38-40.

Zhao C H, Lei Y, Yi J C, et al. Simultaneous determination of Nb and Ta in geochemical samples by inductively coupled plasma mass spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2012, (6): 38-40.

[15]

陶慧林, 朱仕毅, 郑省政, 等. K比例H点标准加入吸光光度法同时测定矿样中铌和钽[J]. 岩矿测试, 2010, 29(6): 699-702.

Tao H L, Zhu S Y, Zheng S Z, et al. Simultaneous determination of niobium and tantalum in ore samples by K-ratio and H-point standard addition spectrophotometry[J]. Rock and Mineral Analysis, 2010, 29(6): 699-702.

[16]

许涛, 崔爱端, 杜梅, 等. 稀土铌钽矿中铌、钽、锆量的电感耦合等离子-原子发射光谱法测定[J]. 分析科学学报, 2007, 23(3): 346-348.

Xu T, Cui A D, Du M, et al. Determination of Nb, Ta and Zr in RE-Nb-Ta ore by ICP-AES[J]. Journal of Analytical Science, 2007, 23(3): 346-348.

[17]

Lamothe P J, Fries T L, Consul J J, et al. Evaluation of a mic-rowave-oven system for the dissolution of geologic samples[J].Analytical Chemistry, 1986, 58(8): 1881-1886. doi: 10.1021/ac00121a060

[18]

Smolik M, Turkowska M. Method of low tantalum am-ounts determination in niobium and its compounds by ICP-OES technique[J].Talanta, 2013, 115: 184-189. doi: 10.1016/j.talanta.2013.03.065

[19]

Turkowska M, Smolik M. Pre-concentration of Ta(Ⅴ) by solvent extraction before determination of trace amounts of Ta in Nb and Nb compounds[J].Analytical Methods, 2016, 8: 5304-5310. doi: 10.1039/C6AY01231K

[20]

Morton J, Tan E, Suvarna S K, et al. Multi-elemental analysis of human lung samples using inductively coupled plasma mass spectrometry[J].Journal of Trace Elements in Medicine and Biology, 2017, 43: 63-71. doi: 10.1016/j.jtemb.2016.11.008

[21]

Janell M C, Noel B, Jeannette R, et al. Determination of tantalum from tantalum oxide nanoparticle X-ray/CT contrast agents in rat tissues and bodily fluids by ICP-OES[J].Journal of Analytical Atomic Spectrometry, 2016, 31(6): 1311-1317. doi: 10.1039/C5JA00446B

[22]

艾军, 汤志勇. 流动注射在线液-液萃取-ICP-AES测定土壤和化探样品中痕量铌和钽[J]. 光谱学与光谱分析, 2001, 21(5): 658-660.

Ai J, Tang Z Y. On-line determination of niobium and tantalum in soil and geochemical exploration samples by inductively coupled plasma atomic emission spectrometry with solvent extraction flow injection[J]. Spectroscopy and Spectral Analysis, 2001, 21(5): 658-660.

[23]

Wang H X, Li J F, Chen Z X, et al. Fast simultaneous determination of niobium and tantalum by kalman filter analysis with flow injection chemiluminescence[J].Analytical Sciences, 2005, 21(9): 1051-1055. doi: 10.2116/analsci.21.1051

[24]

王晓辉, 郑诗礼, 徐红彬, 等. ICP-AES法测定难分解钽铌矿渣中多种金属元素[J]. 光谱学与光谱分析, 2009, 29(3): 805-808.

Wang X H, Zheng S L, Xu H B, et al. Analysis of metallic elements in refractory tantalum-niobium slag by ICP-AES[J]. Spectroscopy and Spectral Analysis, 2009, 29(3): 805-808.

[25]

时晓露, 刘洪青, 孙月婷, 等. 电感耦合等离子体质谱法测定岩石样品中的锆铌铪钽两种预处理方法的比较[J]. 岩矿测试, 2009, 28(5): 427-430.

Shi X L, Liu H Q, Sun Y T, et al. Comparison of two different sample pretreatment methods in determination of Zr, Nb, Hf, Ta in rocks by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 427-430.

[26]

高会艳. ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立[J]. 岩矿测试, 2014, 33(3): 312-320.

Gao H Y. Determination systems of Nb and Ta in geo-chemical samples and rare earth ores by ICP-MS and ICP-AES[J]. Rock and Mineral Analysis, 2014, 33(3): 312-320.

[27]

张军, 陈慧连, 曾宇斌, 等. 两种铌钽矿石消解方法的对比研究[J]. 广州化工, 2014, 42(10): 120-122. doi: 10.3969/j.issn.1001-9677.2014.10.044

Zhang J, Chen H L, Zeng Y B, et al. A comparative study of two kinds of niobium tantalum ore digestion method[J].Guangzhou Chemical Industry, 2014, 42(10): 120-122. doi: 10.3969/j.issn.1001-9677.2014.10.044

[28]

王蕾, 何红蓼, 李冰, 等. 碱熔沉淀-等离子体质谱法测定地质样品中的多元素[J]. 岩矿测试, 2003, 22(2): 86-92.

Wang L, He H L, Li B, et al. Multi-element determination in geological samples by inductively coupled plasma mass spectrometry after fusion-precipitation treatment[J]. Rock and Mineral Analysis, 2003, 22(2): 86-92.

[29]

Motlalepula N, Walter P, Johann T N, et al. Hydrometallurgical separation of niobium and tantalum:A fundamental approach[J].JOM, 2016, 68(2): 556-566. doi: 10.1007/s11837-015-1711-2

[30]

杨秀丽, 王晓辉, 孙青, 等. 低浓度氢氟酸体系中MIBK萃取分离钽铌的研究[J]. 有色金属(冶炼部分), 2012, (11): 26-29. doi: 10.3969/j.issn.1007-7545.2012.11.008

Yang X L, Wang X H, Sun Q, et al. Study on separation of tantalum and niobium by extraction with MIBK from low hydrofluoric acid concentration system[J].Nonferrous Metals (Extractive Metallurgy), 2012, (11): 26-29. doi: 10.3969/j.issn.1007-7545.2012.11.008

[31]

Makanyire T, Sanchez-Segado S, Jha A, et al. Separation and recovery of critical metal ions using ionic liquids[J].Advances in Manufacturing, 2016, 4(1): 33-46. doi: 10.1007/s40436-015-0132-3

[32]

罗道成, 宁立波. 流动注射-离子交换分离富集-分光光度法测定石煤渣中痕量钽[J]. 化学试剂, 2005, 27(9): 556-558.

Luo D C, Ning L B. Determination of trace tantalum in stone coal slag with flow injection-ion exchange separation and preconcentration-spectrophotometry[J]. Chemical Reagents, 2005, 27(9): 556-558.

[33]

罗道成, 刘俊峰. 巯基棉富集分光光度法测定石煤渣中痕量钽[J]. 冶金分析, 2010, 30(8): 54-57.

Luo D C, Liu J F. Spectrophotometric determination of trace tantalum in stone coal slag after enrichment with sulfhydryl cotton[J]. Metallurgical Analysis, 2010, 30(8): 54-57.

[34]

Padmasubashini V, Murty D S R. Determination of ni-obium and tantalum in geological samples by ICP-AES after preconcentration by solid phase extraction on activated carbon or chitin[J]. Atomic Spectroscopy, 2011, 32(1): 17-26.

[35]

胡斌, 江祖成, 曾云鹗, 等. 难熔元素铌钽铀锆在电热蒸发-等离子体发射光谱中氟化蒸发行为研究[J]. 岩矿测试, 1993, 12(3): 183-188.

Hu B, Jiang Z C, Zeng Y H, et al. Vaporization behavior of niobium, tantalum, uranium and zirconium in graphite furnace ETV-ICP-AES using polytetrafluoroethylene as fluorinating agent[J]. Rock and Mineral Analysis, 1993, 12(3): 183-188.

[36]

Li S Q, Hu B, Jiang Z C, et al. Direct determination of trace impurities in niobium pentaoxide solid powder with slurry sampling fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2004, 19(3): 387-391. doi: 10.1039/b307780m

[37]

Gazieva M T, Pometun E A, Pachadzhanov D N, et al. Deter-mination of niobium, tantalum, zirconium, and hafnium by atomic emission spectrometry using directed thermochemical reactions[J].Journal of Analytical Chemistry, 2006, 61(3): 250-252. doi: 10.1134/S1061934806030099

[38]

Deblonde G J, Chagnes A, Cote G, et al. Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals:Niobium and tantalum[J].Journal of Chromatography A, 2016, 1437: 210-218. doi: 10.1016/j.chroma.2016.01.075

[39]

马生凤, 温宏利, 李冰, 等. 微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J]. 岩矿测试, 2016, 35(3): 49-53.

Ma S F, Wen H L, Li B, et al. Determination of Nb and Ta in Nb-Ta ore by inductively coupled plasma-optical emission spectrometry with a combined microwave digestion hydrofluoric acid-resistant system[J]. Rock and Mineral Analysis, 2016, 35(3): 49-53.

[40]

姚玉玲, 吴丽琨, 刘卫, 等. 乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽[J]. 岩矿测试, 2015, 34(2): 224-228.

Yao Y L, Wu L K, Liu W, et al. Determination of Nb and Ta in ores and metallurgical samples by inductively coupled plasma-atomic emission spectrometry with ethanol as a sensitizer[J]. Rock and Mineral Analysis, 2015, 34(2): 224-228.

[41]

李韶梅, 王国增, 赵军, 等. 电感耦合等离子体原子发射光谱法测定铌铁中铌和钽[J]. 冶金分析, 2012, 32(3): 48-50.

Li S M, Wang G Z, Zhao J, et al. Determination of niobium and tantalum in ferroniobium by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2012, 32(3): 48-50.

[42]

徐娟, 郑诗礼, 郭奋, 等. 电感耦合等离子体原子发射光谱法测定钽中微量铌的多元光谱拟合干扰校正方法研究[J]. 冶金分析, 2010, 30(8): 1-6.

Xu J, Zheng S L, Guo F, et al. Research on the multicomponent spectral-fitting interference correction for the determination of micro niobium in tantalum by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2010, 30(8): 1-6.

[43]

Saran R, Khorge C R, Premadas A, et al. ICP-OES determination of niobium, tantalum, and titanium at trace to percentage levels in varying geological matrices[J]. Atomic Spectroscopy, 2004, 25(5): 226-231.

[44]

潘钢, 易建春. 恒温电热板湿法消解-ICP-AES对地质样品中铌和钽的连续测定[J]. 光谱实验室, 2012, 29(3): 1597-1600.

Pan G, Yi J C. Continuos determination of niobium and tantalum in geological samples by ICP-AES with constant temperature electric heating plate wet digestion[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(3): 1597-1600.

[45]

邹阳, 杨远, 罗悠, 等. 电感耦合等离子体原子发射光谱(ICP-AES)法测定锂云母中的锂、钽、铌等7种元素[J]. 中国无机分析化学, 2016, 6(1): 41-44.

Zou Y, Yang Y, Luo Y, et al. Determination of seven elements (lithium, tantalum, niobium et al.) in lepidolite by inductively coupled plasma emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 41-44.

[46]

第五春荣, 柳小明, 袁洪林, 等. 193nm ArF准分子激光剥蚀等离子体质谱法测定熔融玻璃中微量铌和钽[J]. 岩矿测试, 2007, 26(1): 1-3.

Diwu C R, Liu X M, Yuan H L, et al. Determination of micro-amount of niobium and tantalum in fused glass samples by argon fluoride 193nm excimer laser ablation-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2007, 26(1): 1-3.

[47]

Park C S, Shin H S, Oh H, et al. Trace element analysis of whole-rock glass beads of geological reference materials by Nd:YAG UV 213 nm LA-ICP-MS[J].Journal of Analytical Science and Technology, 2016, 7: 15. doi: 10.1186/s40543-016-0094-5

[48]

Weyer S, Münker C, Rehkämper M, et al. Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS[J]. Chemical Geology, 2002, 187(3): 295-313.

[49]

Sun S L, Li J. Determination of Zr, Nb, Mo, Sn, Hf, Ta, and W in seawater by N-benzoyl-N-phenylhydroxylamine extraction chromatographic resin and inductively coupled plasma-mass spectrometry[J].Microchemical Journal, 2015, 119: 102-107. doi: 10.1016/j.microc.2014.11.006

[50]

Yang X J, Pin C. Determination of niobium, tantalum, zirconium and hafnium in geological materials by extraction chromatography and inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2002, 458(2): 375-386. doi: 10.1016/S0003-2670(02)00076-4

[51]

Nagaishi K, Ishikawa T. A simple method for the precise determination of boron, zirconium, niobium, hafnium and tantalum using ICP-MS and new results for rock reference samples[J].Geochemical Journal, 2009, 43(2): 133-141. doi: 10.2343/geochemj.1.0010

[52]

Kamei A. Determination of trace element abundances in GSJ reference rock samples using lithium metaborate-lithium tetraborate fused solutions and inductively coupled plasma mass spectrometry[J]. Geoscience Reports of Shimane University, 2016, 34: 41-49.

[53]

Amosova A A, Panteeva S V, Chubarov V M, et al. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 122: 62-68. doi: 10.1016/j.sab.2016.06.001

[54]

吴赫, 淮鑫斌, 韩张雄, 等. 电感耦合等离子体质谱法测定地球化学样品中的铌和钽[J]. 光谱实验室, 2013, 30(5): 2452-2456.

Wu H, Huai X B, Han Z X, et al. Determination of niobium and tantalum in geological samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(5): 2452-2456.

[55]

陆晓明, 金德龙, 胡莹, 等. X射线荧光光谱法测定镍铬合金中15种元素[J]. 冶金分析, 2013, 33(10): 49-55.

Lu X M, Jin D L, Hu Y, et al. Determination of fifteen elements in nickel-chromium alloy by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2013, 33(10): 49-55.

[56]

安身平, 王树安, 廖志海, 等. X射线荧光光谱法测定镍基合金中镍、铬、钼、铌含量[J]. 理化检验(化学分册), 2009, 45(11): 1339-1340.

An S P, Wang S A, Liao Z H, et al. Determination of nickel, chromium, molybdenum, niobium in the nickel base alloy by X-ray fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(11): 1339-1340.

[57]

彭慧仙. 熔融制样-X射线荧光光谱法测定硬质合金中钨钴镍铁铌钽铬[J]. 冶金分析, 2015, 35(7): 20-26.

Peng H X. Determination of tungsten, cobalt, nickel, iron, niobium, tantalum and chromium in hard alloy X-ray fluorescence spectrometry with fusion samples preparation[J]. Metallurgical Analysis, 2015, 35(7): 20-26.

[58]

邵常丽. X射线荧光光谱法测定铌铁中铌钽铜钛铝磷[J]. 冶金分析, 2017, 37(6): 50-54.

Shao C L. Determination of niobium, tantalum, copper, titanium, aluminum and phosphorus in ferro-niobium by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2017, 37(6): 50-54.

[59]

Viswanathan S, Anjan C, Yamuna S, et al. Wavelength-disper-sive X-ray fluorescence spectrometric determination of tantalum in columbite-tantalite using Ta Kα and an LiF 420 analysing crystal[J].Journal Geological Society of India, 2010, 76(2): 171-174. doi: 10.1007/s12594-010-0091-z

[60]

陈静. X射线荧光光谱法测定地质样品中铌和钽的探讨[J]. 冶金分析, 2015, 35(10): 24-29.

Chen J. Discussion on the determination ofniobium and tantalum in geological samples by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2015, 35(10): 24-29.

[61]

吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383-398.

Ji A. Development of X-ray fluorescence spectrometry in the 30 years[J]. Rock and Mineral Analysis, 2012, 31(3): 383-398.

[62]

刘江斌, 赵峰, 余宇, 等. X射线荧光光谱法同时测定地质样品中铌钽锆铪铈镓钪铀等稀有元素[J]. 岩矿测试, 2010, 29(1): 74-76.

Liu J B, Zhao F, Yu Y, et al. Simultaneous determination of Nb, Ta, Zr, Hf, Ce, Ga, Sc and U in geological samples by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2010, 29(1): 74-76.

[63]

Krishna A K, Khanna T C, Mohan K R, et al. Rapid quan-titative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 122: 165-171. doi: 10.1016/j.sab.2016.07.004

[64]

刘丽莉, 王洪艳, 李俊峰, 等. 流动注射化学发光法测定复杂物料中的铌和钽[J]. 现代科学仪器, 2002, (1): 48-50.

Liu L L, Wang H Y, Li J F, et al. Determination of niobium and tantalum in complex samples by flow injection chemiluminescence method[J]. Modern Scientific Instruments, 2002, (1): 48-50.

[65]

Klos A, Aleksiayenak Y A, Ziembik Z, et al. The use of neutron activation analysis in the biomonitoring of trace element deposition in the opole province[J]. Ecological Chemistry and Engineering S, 2013, 20(4): 677-678.

[66]

Hunt A M W, Dvoracek D, Glascock M D, et al. Major, minor and trace element mass fractions determined using ED-XRF, WD-XRF and INAA for three synthetic mullite reference materials (NCS HC 14807; NCS HC 14808; and NCS HC 14809) and five stream sediment reference materials(GBW07302; GBW07310; GBW07311; GBW07312; and GBW07405)[J].Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(1): 1005-1007. doi: 10.1007/s10967-014-3387-4

[67]

Alharbi W R, El-Taher A. Elemental analysis and natural radioactivity levels of clay by gamma ray spectrometer and instrumental neutron activation analysis[J]. Science and Technology of Nuclear Installations, 2016, ID8726260: 1-5.

[68]

Dampare S B, Nyarko B J B, Osae S, et al. Simultaneous determination of tantalum, niobium, thorium and uranium in placer columbite-tantalite deposits from the Akim Oda District of Ghana by epithermal instrumental neutron activation analysis[J].Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(1): 53-59. doi: 10.1007/s10967-005-0860-0

[69]

El-Taher A. Elemental analysis of granite by instrumental neutron activation analysis(INAA) and X-ray fluorescence analysis(XRF)[J].Applied Radiation Isotope, 2012, 70(1): 350-354. doi: 10.1016/j.apradiso.2011.09.008

相似文献(共20条)

[1]

杨红霞, 刘崴, 李冰. 碘分析方法研究进展. 岩矿测试, 2008, 27(2): 127-136.

[2]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[3]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[4]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[5]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[6]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[7]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[8]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[9]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[10]

, 马玖彤, 李滦宁. 丹宁棉分离富集—发射光谱法同时测定地质样品中微量铌钽锆铪. 岩矿测试, 2001, (1): 27-30.

[11]

姚玉玲, 吴丽琨, 刘卫, 李刚. 乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽. 岩矿测试, 2015, 34(2): 224-228. doi: 10.15898/j.cnki.11-2131/td.2015.02.012

[12]

马生凤, 温宏利, 李冰, 王蕾, 朱云. 微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽. 岩矿测试, 2016, 35(3): 271-275. doi: 10.15898/j.cnki.11-2131/td.2016.03.009

[13]

高会艳. ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立. 岩矿测试, 2014, 33(3): 312-320.

[14]

朱玉伦, 李淑玲. 二阶导数荧光光度法同时测定岩矿中铌和钽. 岩矿测试, 1991, (3): 161-165.

[15]

邓长生, 李盛富, 张建梅, 王明力, 勒孚河, 牛芳红. 常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽. 岩矿测试, 2018, 37(4): 364-370. doi: 10.15898/j.cnki.11-2131/td.201802060016

[16]

陶慧林, 朱仕毅, 郑省政. K比例H点标准加入吸光光度法同时测定矿样中铌和钽. 岩矿测试, 2010, 29(6): 703-706.

[17]

孙海玲, 姜莹, 钱程. P204萃淋树脂对地质样品中痕量铌和钽的分离富集研究及其应用. 岩矿测试, 2003, (1): 33-36.

[18]

王建其, 林慈銮, 袁洪林, 柳小明, 第五春荣. 193 nm ArF准分子激光剥蚀等离子体质谱法测定熔融玻璃中微量铌和钽. 岩矿测试, 2007, 26(1): 1-3.

[19]

胡斌, 江祖成. 难熔元素铌钽铀锆在电热蒸发—等离子体发射光谱中氟化蒸发行为研究. 岩矿测试, 1993, (3): 183-188.

[20]

刘江斌, 刘建军, 赵继宏, 马旻, 冯春红, 黄兴华. 电感耦合等离子体原子发射全谱直读光谱仪测定地质样品中的钽. 岩矿测试, 2005, (2): 151-153.

计量
  • PDF下载量(56)
  • 文章访问量(632)
  • HTML全文浏览量(211)
  • 被引次数(0)
目录

Figures And Tables

铌钽元素分析技术新进展

李刚, 姚玉玲, 李婧祎, 赵朝辉, 罗涛, 李崇瑛