【引用本文】 李立兴, 朱明玉, 方同明, 等. 应用电子探针技术研究北京密云放马峪铬铁矿床成因——来自含铬尖晶石矿物化学的证据[J]. 岩矿测试, 2015, 34(5): 600-608. doi: 10.15898/j.cnki.11-2131/td.2015.05.017
LI Li-xing, ZHU Ming-yu, FANG Tong-ming, et al. Origin of the Fangmayu Chromite Deposit, Miyun, Beijing: Constraints from Electron Microprobe Analyses of Cr-Spinel[J]. Rock and Mineral Analysis, 2015, 34(5): 600-608. doi: 10.15898/j.cnki.11-2131/td.2015.05.017

应用电子探针技术研究北京密云放马峪铬铁矿床成因——来自含铬尖晶石矿物化学的证据

1. 

国土资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037

2. 

北京市地质调查研究院, 北京 100195

收稿日期: 2015-02-27  修回日期: 2015-08-21  接受日期: 2015-09-06

基金项目: 国家自然科学基金资助项目(41402067);中国地质科学院矿产资源研究所基本科研业务费项目(K1410)

作者简介: 李立兴, 博士, 从事黑色金属矿床研究工作. E-mail: lilixing1984@sina.com.。

Origin of the Fangmayu Chromite Deposit, Miyun, Beijing: Constraints from Electron Microprobe Analyses of Cr-Spinel

1. 

Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Land and Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 

Beijing Institute of Geological Survey, Beijing 100195, China

Received Date: 2015-02-27
Revised Date: 2015-08-21
Accepted Date: 2015-09-06

摘要:似层状铬铁矿床长期以来被认为是岩浆分异成因, 但近年来有学者提出其中个别产在蛇绿岩中。本文选择北京放马峪似层状铬铁矿床中纯橄岩、辉橄岩和辉石岩中不同类型的含铬尖晶石进行了电子探针分析。研究表明, 岩浆早期的纯橄岩和辉橄岩中的铬尖晶石富铬(Cr2O3平均43.32%), 而岩浆晚期辉石的结晶消耗了大量的Cr3+, 由于氧逸度的升高, 在辉石岩的单斜辉石中出溶贫铬的铬磁铁矿(Cr2O3平均10.32%)和富铝尖晶石(Cr2O3平均15.77%)。与世界上不同类型铬尖晶石的矿物化学特征进行对比, 可以认为放马峪铬铁矿床是产在阿拉斯加型岩体中的早期岩浆矿床, 而与蛇绿岩无关。本文对放马峪铬铁矿床成因和成矿专属性的限定, 为这类镁铁-超镁铁岩体的铬、铜镍、铂族元素的找矿勘查提供了依据。

关键词: 放马峪, 铬铁矿床, 铬尖晶石, 超镁铁岩, 阿拉斯加型岩体, 电子探针

Origin of the Fangmayu Chromite Deposit, Miyun, Beijing: Constraints from Electron Microprobe Analyses of Cr-Spinel

KEY WORDS: Fangmayu, chromite deposit, Cr-spinel, ultramafic rocks, Alaskan-type intrusion, Electron Microprobe

本文参考文献

[1]

Zhou M F, Robinson P T, Bai W J, et al. Formation of Podiform Chromitites by Melt/Rock Interaction in the Upper Mantle[J].Mineralium Deposita, 1994, 29: 98-101. doi: 10.1007/BF03326400

[2]

鲍佩声,王希斌,彭根永. 中国铬铁矿床[M] . 北京: 科学出版社, 1999: 21-30.

Bao P S,Wang X B,Peng G Y. Chromite Deposites in China[M] . Beijing: Science Press, 1999: 21-30.
[3]

杨经绥, 巴登珠, 徐向珍, 等. 中国铬铁矿床的再研究及找矿前景[J]. 中国地质, 2010, 37(4): 1141-1150.

Yang J S, Ba D Z, Xu X Z, et al. A Restudy of Podiform Chromite Deposits and Their Ore-prospecting Vista in China[J]. Geology in China, 2010, 37(4): 1141-1150.

[4]

朱明玉, 王成辉, 王登红, 等. 中国铬矿主要矿集区及其资源潜力探讨[J]. 中国地质, 2013, 40(4): 995-1006.

Zhu M Y, Wang C H, Wang D H, et al. The Major Chromium Concentration Areas in China and a Discussion on Their Resource Potential[J]. Geology in China, 2013, 40(4): 995-1006.

[5]

张旗. 镁铁-超镁铁岩的分类及其构造意义[J]. 地质科学, 2014, 49(3): 982-1017.

Zhang Q. Classifications of Mafic-ultramafic Rocks and Their Tectonic Significance[J]. Chinese Journal of Geology, 2014, 49(3): 982-1017.

[6]

黄雄南, 李江海, 陈征, 等. 冀东遵化新太古代蛇绿混杂岩带岩石学与构造特征——古板块构造运动的证据[J]. 北京大学学报(自然科学版), 2003, 39(2): 200-210.

Huang X N, Li J H, Chen Z, et al. Petrological and Structural Characteristics of the Zunhua Neoarchean Ophiolitic Mélange[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2003, 39(2): 200-210.

[7]

陈征, 李江海, 黄雄南, 等. 豆荚状铬铁矿豆状结构成因机制探讨——以遵化地区豆荚状铬铁矿为例[J]. 地学前缘, 2004, 11(1): 215-223.

Chen Z, Li J H, Huang X N, et al. Research on the Formation Mechanism of the Nodular Texture of Archean Podiform Chromitite:Evidence from Podiform Chromitite in Zunhua, North China[J]. Earth Science Frontiers, 2004, 11(1): 215-223.

[8]

张旗, 倪志耀, 翟明国, 等. 关于冀东太古宙蛇绿岩的几个问题[J]. 地学前缘, 2003, 10(4): 429-436.

Zhang Q, Ni Z Y, Zhai M G, et al. Comment on Archean Ophiolite in Eastern Hebei[J]. Earth Science Frontiers, 2003, 10(4): 429-436.

[9]

Zhao G C, Wilde S A, Li S Z, et al. U-Pb Zircon Age Constraints on the Dongwanzi Ultramafic-mafic Body, North China, Confirm It is not an Archean Ophiolite[J].Earth and Planetary Science Letters, 2007, 255: 85-93. doi: 10.1016/j.epsl.2006.12.007

[10]

Irvine T N. Chromian Spinel as a Petrogenetic Indicator.PartⅠ.Theory[J].Canadian Journal of Earth Science, 1965, 2: 648-672. doi: 10.1139/e65-046

[11]

Barnes S J, Roeder P L. The Range of Spinel Compo-sitions in Terrestrial Mafic and Ultramafic Rocks[J].Journal of Petrology, 2001, 42(12): 2279-2302. doi: 10.1093/petrology/42.12.2279

[12]

Oze C, Fendorf S, Bird D, et al. Chromium Geochemistry in Serpentinized Ultramafic Rocks and Serpentine Soils from the Franciscan Complex of California[J].American Journal of Science, 2004, 304: 67-101. doi: 10.2475/ajs.304.1.67

[13]

Merlini, Grieco, DiellaV, et al. Ferritchromite and Chro-mian-chlorite Formation in Mélange-hosted Kalkan Chromitite (Southern Urals, Russia)[J].American Mineralogist, 2009, 94: 1459-1467. doi: 10.2138/am.2009.3082

[14]

Su B X, Qin K Z, Sakyi P A, et al. Occurrence of an Alaskan-type Complex in the Middle Tianshan Massif, Central Asian Orogenic Belt:Inferences from Petrological and Mineralogical Studies[J].International Geology Review, 2012, 54(3): 249-269. doi: 10.1080/00206814.2010.543009

[15]

Shi Y R, Wilde S A, Zhao X T, et al. Late Neoarchean Magmatic and Subsequent Metamorphic Events in the Northern North China Craton:SHRIMP Zircon Dating and HfIsotopes of Archean Rocks from Yunmengshan Geopark, Miyun, Beijing[J].Gondwana Research, 2012, 21: 785-800. doi: 10.1016/j.gr.2011.07.009

[16]

姚培慧. 中国铬矿志[M] . 北京: 冶金工业出版社, 1996: 165-170.

Yao P H. Records of China's Chromite Deposits Ore Deposits[M] . Beijing: Metallurgical Industry Press, 1996: 165-170.
[17]

Chen B, Suzuki K, Tian W, et al. Geochemistry and Os-Nd-Sr Isotopes of the Gaositai Alaskan-type Ultramafic Complex from Northern North China Craton:Implications for Mantle-crust Interaction[J].Contributions to Mineralogy and Petrology, 2009, 158: 683-702. doi: 10.1007/s00410-009-0404-7

[18]

李立兴, 李厚民, 崔艳合, 等. 河北高寺台含铬超基性岩杂岩体成岩成矿时代及岩石成因[J]. 岩石学报, 2012, 28(11): 3757-3771.

Li L X, Li H M, Cui Y H, et al. Geochronology and Petrogenesis of the Gaositai Cr-bearing Ultramafic Complex, Hebei Province, China[J]. Acta Petrologica Sinica, 2012, 28(11): 3757-3771.

[19]

李立兴, 李厚民, 王德忠, 等. 河北承德铁马哈叭沁超贫铁矿床的成因与成矿时代[J]. 岩矿测试, 2012, 31(5): 898-905.

Li L X, Li H M, Wang D Z, et al. Ore Genesis and Ore-forming Age of the Tiemahabaq in Ultra-low-grade Iron Deposit in Chengde, Hebei Province, China[J]. Rock and Mineral Analysis, 2012, 31(5): 898-905.

[20]

Arai S, Akizawa N. Precipitation and Dissolution of Chromite by Hydrothermal Solutions in the Oman Ophiolite:New Behavior of Cr and Chromite[J].American Mineralogist, 2014, 99: 28-34. doi: 10.2138/am.2014.4473

[21]

Kapsiotis A N. Alteration of Mélange-hosted Chromitites from Korydallos, Pindos Ophiolite Complex, Greece: Evidence for Modification by a Residual High-T Post-magmatic Fluid[J].Acta Geologica Polonica, 2014, 64(4): 473-494.

[22]

Kapsiotis A N. Alteration of Chromitites from the Voido-lakkos and Xerolivado Mines, Vourinos Ophiolite Complex, Greece:Implications for Deformation-induced Metamorphism[J].Geological Journal, 2015, .

[23]

牟保磊. 元素地球化学[M] . 北京: 北京大学出版社, 1999: 27-55.

Mu B L. Element Geochemistry[M] . Beijing: Peking University Press, 1999: 27-55.
[24]

Cameron E N. Postcumulus and Subsolidus Equilibration of Chromite and Coexisting Silicates in the Eastern Bushveld Complex[J].Geochimica et Cosmochimica Acta, 1975, 39: 1021-1033. doi: 10.1016/0016-7037(75)90044-7

[25]

陈博, 朱永峰. 新疆达拉布特超镁铁岩成因——来自铬尖晶石的证据[J]. 地学前缘, 2008, 15(6): 312-322.

Chen B, Zhu Y F. Petrology of Ultramafic Rock in Darbut Ophiolite (Xinjiang), Evidence from Cr-spinel[J]. Earth Science Frontiers, 2008, 15(6): 312-322.

[26]

Candia M A F, Gaspar J C. Chromian Spinels in Metam-orphosed Ultramafic Rocks from MangabalⅠ and ⅡComplexes, Gioás, Brazil[J].Mineralogy and Petrology, 1997, 60: 27-40. doi: 10.1007/BF01163133

[27]

Krause J, Brügmann G E, Pushkarev E V, et al. Accessory and Rock Forming Minerals Monitoring the Evolution of Zoned Mafic-ultramafic Complexes in the Central Ural Mountains[J].Lithos, 2007, 95: 19-42. doi: 10.1016/j.lithos.2006.07.018

[28]

Krause J, Brügmann G E, Pushkarev E V, et al. Chemical Composition of Spinel from Uralian-Alaskan-type Mafic-ultramafic Complexes and Its Petrogenetic Significance[J].Contributions to Mineralogy and Petrology, 2011, 161: 255-273. doi: 10.1007/s00410-010-0530-2

[29]

Fabriès J. Spinel-olivine Geothermometry in Peridotites from Ultramafic Complexes[J].Contributions to Mineralogy and Petrology, 1979, 69: 329-336. doi: 10.1007/BF00372258

[30]

Herzberg C T, Chapman N A. Clinopyroxene Geothermometry of Spinel-lherzolites[J].American Mineralogist, 1976, 61: 626-637.

[31]

Tian W, Chen B, Ireland T R, et al. Petrology and Geochemistry of Dunites, Chromitites and Mineral Inclusions from the Gaositai Alaskan-type Complex, North China Craton:Implications for Mantle Source Characteristics[J].Lithos, 2011, 127: 165-175. doi: 10.1016/j.lithos.2011.08.013

[32] Himmelberg G R,Loney R A. Characteristics and Petro-genesis of Alaskan-type Ultramafic-mafic Intrusions, Southern Alaska[M] . US: Geological Survey, 1995: 1-47.
[33]

Scheel J E. Age and Origin of the Turnagain Alaskan Type Intrusion and Associated Ni-Sulphide Mineralization, North-Central British Columbia, Canada [D]. Vancouve: University of British Columbia, 2007: 160-162.

[34]

Taylor H P. The Zoned Ultramafic Complexes of South-eastern Alaska[M]//Wyllie P J. Ultramafic and Related Rocks. New York: Wiley Press, 1967: 97-121.

[35] Cawthorn R G. Layered Intrusions[M] . Amsterdam: Elsevier Science, 1996: 1-531.
[36]

钟宏, 胡瑞忠, 朱维光, 等. 层状岩体的成因及成矿作用[J]. 地学前缘, 2007, 14(2): 159-172.

Zhong H, Hu R Z, Zhu W G, et al. Genesis and Mineralization of Layered Intrusions[J]. Earth Science Frontiers, 2007, 14(2): 159-172.

[37]

Nixon G T, Cabri L J, Laflamme J H G, et al. Platinum-group Element Mineralization in Lode and Placer Deposits Associated with the Tulameen Alaskan-type Complex, British Columbia[J].The Canadian Mineralogist, 1990, 28: 503-535.

[38]

Garuti G, Pushkarev E V, Zaccarini F, et al. Chromite Composition and Platinum-group Mineral Assemblage in the Uktus Alaskan-type Complex (Central Urals, Russia)[J].Mineralium Deposita, 2003, 38: 312-326. doi: 10.1007/s00126-003-0348-1

相似文献(共18条)

[1]

梁细荣, 姚立, 田地. 电子探针背景扣除和谱线干扰修正方法的进展. 岩矿测试, 2008, 27(1): 49-54.

[2]

刘亚非, 赵慧博, 高志文, 来志庆. 应用偏光显微镜和电子探针技术研究安徽铜官山矽卡岩型铜铁矿床伴生元素金银铂钯铀的赋存状态. 岩矿测试, 2015, 34(2): 187-193. doi: 10.15898/j.cnki.11-2131/td.2015.02.006

[3]

叶美芳, 刘三, 解古巍, 赵慧博, 周宁超, 魏小燕, 杨建国, 侯弘, 王磊, 王轶. 应用扫描电镜-X射线衍射-电子探针研究北山斑岩铜矿区绢英岩中白色云母的特征. 岩矿测试, 2016, 35(2): 166-177. doi: 10.15898/j.cnki.11-2131/td.2016.02.009

[4]

孙志华, 刘开平, 刘民武. 玄武岩玻璃的电子探针分析. 岩矿测试, 2011, 30(4): 446-450.

[5]

李平, 马伟幸, 王蓓. 昌化芝麻地鸡血石物相鉴定. 岩矿测试, 2008, 27(1): 67-68.

[6]

许乃岑, 沈加林, 张静. X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用. 岩矿测试, 2015, 34(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2015.01.010

[7]

戴婕, 徐金沙, 杜谷, 王坤阳. 利用扫描电镜-电子探针研究四川杨柳坪镍铜硫化物矿床铂钯的赋存状态及沉淀机制. 岩矿测试, 2015, 34(2): 161-168. doi: 10.15898/j.cnki.11-2131/td.2015.02.002

[8]

兰延, 陆太进, 陈伟明, 刘洋, 梁榕, 马瑛, 张小虎. 基于相对密度和X射线粉晶衍射技术测定硬玉岩中硬玉的含量. 岩矿测试, 2015, 34(2): 207-212. doi: 10.15898/j.cnki.11-2131/td.2015.02.009

[9]

陈克樵, 欧阳菲. 电子探针定量分析直接测定含铁矿物中二.... 岩矿测试, 1992, (4): 306-310.

[10]

李增胜, 吴敏, 徐爽, 张燕挥, 迟乃杰, 林培军. 应用电子探针技术研究山东金青顶金矿床碲化物特征. 岩矿测试, 2018, 37(3): 266-274. doi: 10.15898/j.cnki.11-2131/td.201709130150

[11]

黄广文, 潘家永, 张占峰, 黄广楠, 张涛, 廖志权, 杜后发. 应用电子探针研究蒙其古尔铀矿床含矿砂岩岩石学特征及铀矿物分布规律. 岩矿测试, 2017, 36(2): 196-207. doi: 10.15898/j.cnki.11-2131/td.2017.02.014

[12]

王勇, 唐菊兴, 王立强. 西藏邦铺斑岩钼(铜)矿床钾硅酸盐化热液黑云母电子探针分析及早期成矿流体特征. 岩矿测试, 2016, 35(4): 440-447. doi: 10.15898/j.cnki.11-2131/td.2016.04.017

[13]

闫巧娟, 魏小燕, 叶美芳, 赵慧博, 周宁超. 激光剥蚀电感耦合等离子体质谱-电子探针分析白山堂铜矿中的黄铁矿成分. 岩矿测试, 2016, 35(6): 658-666. doi: 10.15898/j.cnki.11-2131/td.2016.06.012

[14]

赵文俞, , 牟善斌. 木兰山蓝片岩中斜黝帘石—低铁绿帘石连生体的确定. 岩矿测试, 2002, (1): 29-32.

[15]

汪雄武, 常海亮, 牛焕友. 花岗岩中熔融包裹体恢复均匀化后探针片的磨制工艺. 岩矿测试, 2004, (2): 157-158.

[16]

刘琦, 赵爱林, 肖刚, 岳明新. 喷流沉积型多金属矿床中镍钼的赋存特征. 岩矿测试, 2013, 32(1): 70-77.

[17]

侯江龙, 王登红, 王成辉, 黄凡, 李建康, 陈振宇. 河北曲阳县中佐伟晶岩脉中电气石的类型和成岩成矿环境研究. 岩矿测试, 2017, 36(5): 529-537. doi: 10.15898/j.cnki.11-2131/td.201704130056

[18]

周剑雄, 陈振宇, . 独居石的电子探针钍—铀—铅化学测年. 岩矿测试, 2002, (4): 241-246.

计量
  • PDF下载量(2405)
  • 文章访问量(1124)
  • HTML全文浏览量(19)
  • 被引次数(0)
目录

Figures And Tables

应用电子探针技术研究北京密云放马峪铬铁矿床成因——来自含铬尖晶石矿物化学的证据

李立兴, 朱明玉, 方同明, 李厚民