【引用本文】 黄园英, 王倩, 韩子金, 等. 利用扫描电镜技术研究纳米Ni-Fe对四氯化碳快速脱氯的机理[J]. 岩矿测试, 2015, 34(3): 346-352. doi: 10.15898/j.cnki.11-2131/td.2015.03.015
HUANG Yuan-ying, WANG Qian, HAN Zi-jin, et al. Kinetics and Mechanism of Carbon Tetrachloride Rapid Reduction by Nanoscale Ni-Fe Using Scanning Electron Microscope[J]. Rock and Mineral Analysis, 2015, 34(3): 346-352. doi: 10.15898/j.cnki.11-2131/td.2015.03.015

利用扫描电镜技术研究纳米Ni-Fe对四氯化碳快速脱氯的机理

1. 

国家地质实验测试中心, 北京 100037

2. 

中国地质大学(北京)水资源与环境学院, 北京 100083

收稿日期: 2014-03-28  修回日期: 2015-05-05  接受日期: 2015-05-25

基金项目: 国土资源部公益性行业专项(201411089)

作者简介: 黄园英, 博士, 副研究员, 研究方向为水资源污染控制与治理技术研究. E-mail: yuanyinghuang304@163.com.。

通信作者: 刘菲, 博士, 教授, 研究方向为有机物污染监测与地下水污染治理研究. E-mail: feiliu@cugb.edu.cn.

Kinetics and Mechanism of Carbon Tetrachloride Rapid Reduction by Nanoscale Ni-Fe Using Scanning Electron Microscope

1. 

National Research Center for Geoanalysis, Beijing 100037, China

2. 

School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China

Corresponding author: LIU Fei, feiliu@cugb.edu.cn

Received Date: 2014-03-28
Revised Date: 2015-05-05
Accepted Date: 2015-05-25

摘要:纳米铁具有高的比表面积和高反应活性, 能快速将氯代烯烃还原成无毒氯离子、乙烯和乙烷, 但对于氯代烷烃的脱氯仍能产生大量的氯代中间或最终产物, 可以通过合成制得纳米双金属提高脱氯速率和减少氯代中间产物。本文利用扫描电镜测得实验室制备的纳米Ni-Fe(2%, 质量分数)颗粒直径为20~60 nm, 通过批实验方式对纳米Ni-Fe降解四氯化碳的反应动力学性质、产物、持久性能和反应机理进行了探讨。结果表明, 纳米Ni-Fe体系主要最终产物为42% CH4和17% CH2Cl2。与铸铁屑和纳米铁相比, 纳米Ni-Fe由于催化脱氯加氢, 显著提高了氯代烃脱氯速率, 同时降低了有毒氯代产物的产量, 且Ni作为催化剂不会进入水体引起二次污染。纳米Ni-Fe颗粒在空气中具有很好的稳定性, 虽然降解四氯化碳的最终产物CH4与纳米Pd-Fe相比少13%, 但由于价格便宜, 有望在工程上应用于氯代有机化合物水土污染治理。

关键词: 扫描电镜, 纳米Ni-Fe, 四氯化碳, 脱氯机理

Kinetics and Mechanism of Carbon Tetrachloride Rapid Reduction by Nanoscale Ni-Fe Using Scanning Electron Microscope

KEY WORDS: Scanning Electron Microscope, nanoscale Ni-Fe, carbon tetrachloride, dechlorination mechanism

本文参考文献

[1]

Gillham R W, O'hannesin S F. Enhanced Degradation of Halogenated Aliphatics by Zero-valent iron[J].Ground Water, 1994, 32: 958-967. doi: 10.1111/gwat.1994.32.issue-6

[2]

Doong R A, Lai Y L. Effect of Metal Ions and Humic Acid on the Dechlorination of Tetrachloroethylene by Zerovalent Iron[J].Chemosphere, 2006, 64: 371-378. doi: 10.1016/j.chemosphere.2005.12.038

[3]

Feng J, Lim T T. Pathways and Kinetics of Carbon Tetr-achloride and Chloroform Reductions by Nano-scale Fe and Fe/Ni Particles: Comparison with Commercial Micro-scale Fe and Zn[J].Chemosphere, 2005, 59: 1267-1277. doi: 10.1016/j.chemosphere.2004.11.038

[4]

Wei Y T, Wu S C, Chou C M, et al. Influence of Nanoscale Zero-valent Iron on Geochemical Properties of Groundwater and Vinyl Chloride Degradation: A Field Case Study[J].Water Research, 2010, 44(1): 131-140. doi: 10.1016/j.watres.2009.09.012

[5]

Lee C L, Lee H Y, Tseng K H, et al. Enhanced Dechlorination of Chlorobenzene by Microwave-induced Zero-valent Iron: Particle Effects and Activation Energy[J].Environmental Chemistry Letters, 2011, 9: 355-359. doi: 10.1007/s10311-010-0286-y

[6]

Cheng S F, Wu S C. The Enhancement Methods for the Degradation of TCE by Zero-valent Metals[J].Chemosphere, 2000, 41: 1263-1270. doi: 10.1016/S0045-6535(99)00530-5

[7]

Wang J, Blowers P, Farrell J, et al. Understanding Reduction of Carbon Tetrachloride at Nickel Surfaces[J].Environmental Science and Technology, 2004, 38(5): 1576-1581. doi: 10.1021/es034877k

[8]

Chen X, Yao X Y, Yu C, et al. Hydrodechlorination of Polychlorinated Biphenyls in Contaminated Soil from an E-waste Recycling Area, Using Nanoscale Zerovalent Iron and Pd/Fe Bimetallic Nanoparticles[J].Environmental Science and Pollution Research, 2014, 21: 5201-5210. doi: 10.1007/s11356-013-2089-8

[9]

Wang Y, Zhou D M, Wang Y J, et al. Automatic pH Control System Enhances the Dechlorination of 2, 4, 4-Trichlorobiphenyl and Extracted PCBs from Contaminated Soil by Nanoscale Fe and Pd/Fe[J].Environmental Science and Pollution Research, 2012, 9: 448-457.

[10]

Johnson T L, Scherer M M, Tratnyek P G, et al. Kinetics of Halogenated Organic Compound Reduction by Iron Metal[J].Environmental Science and Technology, 1996, : 2634-2640.

[11]

Wang X Y, Chen C, Chang Y, et al. Dechlorination of Chlorinated Methanes by Pd/Fe Bimetallic Nanoparticles[J].Journal of Hazardous Materials, 2009, 161: 815-823. doi: 10.1016/j.jhazmat.2008.04.027

[12]

Wei J J, Xu X H, Liu Y, et al. Catalytic Hydrodechlo-rination of 2, 4-Dichlorophenol over Nanoscale Pd/Fe: Reaction Pathway and Some Experimental Parameters[J].Water Research, 2006, 40: 348-354. doi: 10.1016/j.watres.2005.10.017

[13]

Xu J, Bhattacharya D. Modeling of Fe/Pd Nanoparticle-based Functionalized Membrane Reactor for PCB Dechlorination at Room Temperature[J].Journal of Physical Chemistry C, 2008, 112: 9133-9144. doi: 10.1021/jp7097262

[14]

Ramos M A V, Yan W, Li X Q, et al. Simultaneous Oxidation and Reduction of Arsenic by Zero-valent Iron Nanoparticles: Understanding the Significance of the Core-shell Structure[J].Journal of Physical Chemistry, 2009, 113: 14591-14594. doi: 10.1021/jp9041759

[15]

Mohmood I, Lopes C B, Lopes I, et al. Nanoscale Materials and Their Use in Water Contaminants Removal—A Review[J].Environmental Science and Pollution Research, 2013, 20: 1239-1260. doi: 10.1007/s11356-012-1415-x

[16]

Zhang M, He F, Zhao D, et al. Degradation of Soil-sorbed Trichloroethylene by Stabilized Zero Valent Iron Nanoparticles: Effects of Sorption, Surfactants, and Natural Organic Matter[J].Water Research, 2011, 45: 2401-2414. doi: 10.1016/j.watres.2011.01.028

[17]

Song H, Carraway E. Reduction of Chlorinated Ethanes by Nanosized Zero-valent Iron: Kinetics, Pathways, and Effects of Reaction Conditions[J].Environmental Science and Technology, 2005, 39: 6237-6245. doi: 10.1021/es048262e

[18]

Karn B, Kuiken T, Otto M, et al. Nanotechnology and In Situ Remediation: A Review of the Benefits and Potential Risks[J].Environmental Health Perspectives, 2009, 117(12): 1823-1831. doi: 10.1289/ehp.0900793

[19]

Schrick B, Blough J L, Jone A D, et al. Hydr-odechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel-Iron Nanoparticles[J].Chemistry of Materials, 2002, 14: 5140-5147. doi: 10.1021/cm020737i

[20]

Wu L F, Ritchie S M C. Removal of Trichloroethylene from Water by Cellulose Acetate Supported Bimetallic Ni/Fe Nanoparticles[J].Chemosphere, 2006, 63: 285-292. doi: 10.1016/j.chemosphere.2005.07.021

[21]

Barnes R J, Riba O, Gardner M N, et al. Optimization of Nano-scale Nickel/Iron Particles for the Reduction of High Concentration Chlorinated Aliphatic Hydrocarbon Solutions[J].Chemosphere, 2010, 79: 448-454. doi: 10.1016/j.chemosphere.2010.01.044

[22]

黄园英, 刘菲, 汤鸣皋, 等. 纳米镍/铁和铜/铁双金属对四氯乙烯脱氯研究[J]. 环境科学学报, 2007, 27(1): 80-85.

Huang Y Y, Liu F, Tang M G, et al. Dechlorination of Tetrachloroethene with Nanoscale Ni/Fe and Cu/Fe Bimetallic Particles[J]. Acta Scientiae Circumstantiae, 2007, 27(1): 80-85.

[23]

Parchetii G K, Doong R. Dechlorination of Chlorinated Hydrocarbons by Bimetallic Ni/Fe Immobilized on Polyethylene Glycol-grafted Microfiltration Membranes under Anoxic Conditions[J].Chemosphere, 2012, 86: 392-399. doi: 10.1016/j.chemosphere.2011.10.028

[24]

Helland B R, Alvarez P J J, Schnoor J L, et al. Reductive Dechlorination of Carbon Tetrachloride with Elemental Iron[J].Journal of Hazardous Materials, 1995, 41: 205-216. doi: 10.1016/0304-3894(94)00111-S

[25]

Xu W Y, Gao T Y. Dechlorination of Carbon Tetra-chloride by the Catalyzed Fe-Cu Process[J].Journal of Environmental Sciences, 2007, 19: 792-799. doi: 10.1016/S1001-0742(07)60133-8

[26]

Li T, Farrell J. Reductive Dechlorination of Trichlor-oethene and Carbon Tetrachloride Using Iron and Palladized-iron Cathodes[J].Environmental Science and Technology, 2000, 34: 173-179. doi: 10.1021/es9907358

[27]

Zhang W X, Wang C B, Lien H L, et al. Treatment of Chl-orinated Organic Contaminants with Nanoscale Bimetallic Particles[J].Catalysis Today, 1998, 40: 387-395. doi: 10.1016/S0920-5861(98)00067-4

[28]

Lien H L, Zhang W X. Transformation of Chlorinated Methanes by Nanoscale Iron Particles[J].Journal of Environmental Engineering, 1999, 9: 1042-1047.

[29]

Lien H L, Zhang W X. Enhanced Dehalogenation of Halogenated Methanes by Bimetallic Cu/Al[J].Chemosphere, 2002, 49: 371-378. doi: 10.1016/S0045-6535(02)00248-5

[30]

Choi W, Hoffmann M R. Photoreductive Mechanism of CCl4 Degradation on TiO2 Particles and Effects of Electron Donors[J].Environmental Science & Technology, 1995, 29: 1646-1654.

[31]

Yang X G, Li Y, Lu A H, et al. Photocatalytic Reduction of Carbon Tetrachloride by Natural Sphalerite under Visible Light Irradiation[J].Solar Energy Materials and Solar Cells, 2011, 95: 1915-1921. doi: 10.1016/j.solmat.2011.02.020

相似文献(共20条)

[1]

戴婕, 徐金沙, 杜谷, 王坤阳. 利用扫描电镜-电子探针研究四川杨柳坪镍铜硫化物矿床铂钯的赋存状态及沉淀机制. 岩矿测试, 2015, 34(2): 161-168. doi: 10.15898/j.cnki.11-2131/td.2015.02.002

[2]

陈生蓉, 帅琴, 高强, 田亚, 徐生瑞, 黄云杰. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究. 岩矿测试, 2015, 34(6): 636-642. doi: 10.15898/j.cnki.11-2131/td.2015.06.006

[3]

范瑶瑶, 胡宗超, 郝宏艳, 刘政平, 覃汉清. X射线衍射-红外光谱-扫描电镜表征超声辅助合成GdPO4:Ce, Tb纳米材料形貌及光学性质. 岩矿测试, 2016, 35(2): 152-158. doi: 10.15898/j.cnki.11-2131/td.2016.02.007

[4]

周姣花, 徐金沙, 牛睿, 周晶, 来佳仪. 利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态. 岩矿测试, 2018, 37(2): 130-138. doi: 10.15898/j.cnki.11-2131/td.201605050114

[5]

徐国栋, 王冠, 程江, 董随亮. 应用能谱扫描电镜与X射线衍射等分析技术研究西藏扎西康铅锌矿中伴生元素锰的赋存状态. 岩矿测试, 2014, 33(6): 808-812. doi: 10.15898/j.cnki.11-2131/td.2014.06.008

[6]

李欣桐, 先怡衡, 樊静怡, 张璐繁, 郭靖雯, 高占远, 温睿. 应用扫描电镜-X射线衍射-电子探针技术研究河南淅川绿松石矿物学特征. 岩矿测试, 2019, 38(4): 373-381. doi: 10.15898/j.cnki.11-2131/td.201809090102

[7]

董树屏, , 刘涛. 用扫描电镜技术识别广州市大气颗粒物主要种类. 岩矿测试, 2001, (3): 202-207.

[8]

叶美芳, 刘三, 解古巍, 赵慧博, 周宁超, 魏小燕, 杨建国, 侯弘, 王磊, 王轶. 应用扫描电镜-X射线衍射-电子探针研究北山斑岩铜矿区绢英岩中白色云母的特征. 岩矿测试, 2016, 35(2): 166-177. doi: 10.15898/j.cnki.11-2131/td.2016.02.009

[9]

王永亚, 干福熹. 广西陆川蛇纹石玉的岩相结构及成矿机理. 岩矿测试, 2012, 31(5): 788-793.

[10]

王含, 周征宇, 钟倩, 刘瑞婷, 刘琦, 李英博. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征. 岩矿测试, 2016, 35(1): 56-61. doi: 10.15898/j.cnki.11-2131/td.2016.01.010

[11]

杜谷, 王坤阳, 冉敬, 王风玉, 潘忠习. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用. 岩矿测试, 2014, 33(5): 625-633.

[12]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[13]

王坤阳, 徐金沙, 饶华文, 裴眼路. 扫描电镜-X射线能谱仪在丹巴地区铂族矿物物相特征分析中的应用. 岩矿测试, 2013, 32(6): 924-930.

[14]

杨德平, 舒磊, 熊玉新, 王旭, 刘鹏瑞, 刘智. 扫描电镜能谱与冷冻传输装置联用测试矿物中流体包裹体固液相成分的方法研究. 岩矿测试, 2015, 34(5): 550-557. doi: 10.15898/j.cnki.11-2131/td.2015.05.009

[15]

胡勇平, 于学峰, 郑林伟, 郑遗凡. 高分辨扫描电镜和X射线能谱Mapping技术研究碲矿物的成分和形态特征. 岩矿测试, 2015, 34(6): 643-651. doi: 10.15898/j.cnki.11-2131/td.2015.06.007

[16]

曾广圣, 欧乐明. X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征. 岩矿测试, 2019, 38(2): 160-168. doi: 10.15898/j.cnki.11-2131/td.201804130042

[17]

刘亚非, 王立社, 魏小燕, 周宁超, 来志庆, 杨文强, 李智明, 赵慧博. 应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征. 岩矿测试, 2016, 35(1): 48-55. doi: 10.15898/j.cnki.11-2131/td.2016.01.009

[18]

田隆. 五颜六色的黄龙玉及致色机理. 岩矿测试, 2012, 31(2): 306-311.

[19]

孔庆池, 劳永新. 四氯化碳重液法分离蒙脱石. 岩矿测试, 1999, (1): 62-64.

[20]

邵坤, 赵改红, 赵朝辉. 腐植酸改性强化磁铁矿吸附水体中铅镉的实验研究. 岩矿测试, 2019, 38(6): 715-723. doi: 10.15898/j.cnki.11-2131/td.201901250017

计量
  • PDF下载量(1216)
  • 文章访问量(925)
  • HTML全文浏览量(67)
  • 被引次数(0)
目录

Figures And Tables

利用扫描电镜技术研究纳米Ni-Fe对四氯化碳快速脱氯的机理

黄园英, 王倩, 韩子金, 刘菲