

氨水分离-电感耦合等离子体质谱法测定化探样品中的银
1. | 浙江省地质矿产研究所, 浙江 杭州 310007 |
2. | 中国环境监测总站, 北京 100012 |
Determination of Silver in Samples for Geochemical Exploration by Inductively Coupled Plasma-Mass Spectrometry after Ammonia Complexation
1. | Zhejiang Institute of Geology & Mineral Resources, Hangzhou 310007, China |
2. | China National Environmental Monitoring Center, Beijing 100012, China |
摘要:应用电感耦合等离子体质谱法(ICP-MS)测定化探样品中的Ag时, 两个同位素107Ag和109Ag分别受90Zr16O1H、91Zr16O和92Zr16O1H、93Nb16O等的干扰, 即使采用干扰系数法校正, 测定结果误差仍较大。本文采用硝酸-氢氟酸-高氯酸封闭分解样品, 氨水沉淀分离干扰元素Zr后以103Rh为内标用ICP-MS测定, 溶液中残留Zr对107Ag的测定干扰采用干扰系数法进行校正。方法检出限(3σ)为4.1 ng/g, 相对标准偏差(n=12) 为2.5%~7.8%。经53个地球化学标准物质验证, 溶液中的Ag未见损失。本方法是在氨性介质中Ag与氨形成稳定的络合离子, 而Zr则生成氢氧化物沉淀, 实现了Ag和Zr的分离, 大大减小了Zr对Ag的测定干扰; 采用封闭分解样品, 减少用酸量, 降低了样品空白值, 操作方法比高压密闭分解和P507萃淋树脂分离方法更简便快速。
Determination of Silver in Samples for Geochemical Exploration by Inductively Coupled Plasma-Mass Spectrometry after Ammonia Complexation
ABSTRACT Isobaric ions interfere with two isotopes of Ag during determination by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), i.e., 90Zr16O1H and 91Zr16O on 107Ag, and 92Zr16O1H and 93Nb16O on 109Ag. Although an interference correction coefficient method was used for the calibration of the analytical results, the analytical errors remain serious. In the proposed method, samples were closed decomposed by nitric acid, hydrofluoric acid, and perchloric acid. Ammonia was used to precipitate Zr and the purified Ag was determined by ICP-MS using 103Rh as the internal standard. The interference caused by the residual Zr was calibrated by the interference coefficient method. The method has a detection limit (3σ) of 4.1 ng/g and relative standard deviation (n=12) ranging from 2.5% to 7.8%. Determination of Ag in 53 primary certified materials of geochemical exploration indicates no loss of Ag. Using ammonium as the reagent, separation of Zr and Ag was successfully achieved due to the formation of the stable Ag-ammonium complex and Zr-hydroxide precipitate. The separation of Ag from Zr has reduced the interferences of Zr on Ag. Compared with the high-pressure sealed decomposition method and the P507 extraction resin separation method, the closed sample decomposition method is much simpler with less acid used and a lower blank.

本文参考文献
[1] |
徐娟, 胡兆初, 刘勇胜, 等. 膜去溶-电感耦合等离子体质谱法测定21种国际地质标样中的银[J]. 分析化学, 2008, 36(11): 1493-1498. doi: 10.3321/j.issn:0253-3820.2008.11.008 Xu J, Hu Z C, Liu Y S, et al. Direct Determination of Ag in 21 International Geological Reference Materials by Membrane Desolvation-Inductively Coupled Plasma-Mass Spectrometry[J].Chinese Journal of Analytical Chemistry, 2008, 36(11): 1493-1498. doi: 10.3321/j.issn:0253-3820.2008.11.008 |
[2] |
段树荣. 液珠萃取比色法测定化探样品中的金银[J]. 桂林工学院学报, 2003, 23(1): 136-138. Duan S R. Analysis of Trace Gold and Silver in Geochemical Samples in Extraction Colorimetry[J]. Journal of Guilin Institute of Technology, 2003, 23(1): 136-138. |
[3] |
牛占海, 林焰, 和督虎, 等. 石墨炉原子吸收法测定化探样品中银和镉[J]. 冶金分析, 2001, 21(6): 61-63. Niu Z H, Lin Y, He D H, et al. GFAAS Determination of Ag and Cd in Geochemical Samples[J]. Metanurgical Analysis, 2001, 21(6): 61-63. |
[4] |
张雪梅, 张勤. 发射光谱法测定勘查地球化学样品中银硼锡钼铅[J]. 岩矿测试, 2006, 25(4): 323-326. Zhang X M, Zhang Q. Determination of Silver, Boron, Tin, Molybdenum and Lead in Geochemical, Exploration Samples by Emission Spectrometry[J]. Rock and Mineral Analysis, 2006, 25(4): 323-326. |
[5] |
何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2002, 21(5): 8-12. He H L, Li B, Han L R, et al. Evaluation of Determining 47 Elements in Geological Samples by Pressurized Acid Digestion-ICPMS[J]. Chinese Journal of Analysis Laboratory, 2002, 21(5): 8-12. |
[6] |
曹心德, 尹明, 王小蓉, 等. 微波消解-电感耦合等离子体质谱法测定土壤中微量稀土元素[J]. 分析化学, 1999, 27(6): 679-683. Cao X D, Yin M, Wang X R, et al. Determination of Trace Rare Earth Elements in Soils by Inductively Coupled Plasma-Mass Spectrometry after Microwave Digestion for Sample Preparation[J]. Chinese Journal of Analytical Chemistry, 1999, 27(6): 679-683. |
[7] |
周国兴, 刘玺祥, 崔德松, 等. 碱熔ICP-MS法测定岩石中稀土等28种金属元素[J]. 质谱学报, 2010, 31(2): 120-124. Zhou G X, Liu X X, Cui D S, et al. Determination of 28 Elements Including Rare Earth Elements by ICP-MS in Alkali Melted Rock Sample[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(2): 120-124. |
[8] |
黄慧萍, 李艳玲, 陶德刚, 等. 电感耦合等离子体质谱法测定铬铁矿中痕量稀土元素[J]. 冶金分析, 2005, 25(6): 42-45. Huang H P, Li Y L, Tao D G, et al. Determination of Trace Rare Earth Elements in Monomineralic Rocks of Chromite by Inductively Coupled Plasma-Mass Spectrometry[J]. Metanurgical Analysis, 2005, 25(6): 42-45. |
[9] |
周丽萍, 李中玺. 王水提取-电感耦合等离子体质谱法同时测定地质样品中微量银、镉、铋[J]. 分析试验室, 2005, 24(9): 20-25. Zou L P, Li Z X. Determination of Silver, Cadmium and Bismuth in Geological Samples by Inductively Coupled Plasma Mass Spectrometry with Aqua Regia Treatment[J]. Chinese Journal of Analysis Laboratory, 2005, 24(9): 20-25. |
[10] |
范凡, 温宏利, 屈文俊, 等. 王水溶样-等离子体质谱法同时测定地质样品中砷锑铋银镉铟[J]. 岩矿测试, 2009, 28(4): 333-336. Fan F, Wen H L, Qu W J, et al. Determination of Arsenic, Antimony, Bismuth, Silver, Cadmium and Indiumin Geologgical Samples by Inductively Coupled Plasma-Mass Spectrometry with Aqua Regia Sample Digestion[J]. Rock and Mineral Analysis, 2009, 28(4): 333-336. |
[11] |
闵广全. CCT-ICP-MS测定土壤中微量元素银[J]. 农业科技与装备, 2012, (10): 17-18. doi: 10.3969/j.issn.1674-1161.2012.10.009 Min G Q. Determination of Soil Microelement Ag with CCT-ICP-MS[J].Agricultural Science & Technology and Equipment, 2012, (10): 17-18. doi: 10.3969/j.issn.1674-1161.2012.10.009 |
[12] |
Guo W, Hu S H, Zhang J Y, et al. Elimination of Oxide Interferences and Determination of Ultra-trace Silver in Soils by ICP-MS with Ion-Molecule Reactions[J].Science of the Total Environment, 2011, 409: 2981-2986. doi: 10.1016/j.scitotenv.2011.04.011 |
[13] |
邢智, 漆亮. P507萃淋树脂分离-电感耦合等离子体质谱法快速测定化探样品中的银[J]. 岩矿测试, 2013, 32(3): 398-401. Xing Z, Qi L. Separation with P507 Levextrel Resin for Rapid Determination of Ag in Geochemical Exploration Samples by ICP-MS[J].Rock and Mineral Analysis, 2013, 32(3): 398-401. |
引证文献(本文共被引用4次)
[1] |
钛铁试剂共振散射法测定废胶片中的银含量[J]. 翟好英,胡尧,张金洋. 化学试剂. 2016(09) |
[2] |
电感耦合等离子体质谱法测定硒时多元素干扰的碰撞/反应研究及其在地质样品中的应用[J]. 程秀花,王海蓉,黎卫亮,王鹏. 冶金分析. 2015(12) |
[3] |
盐酸介质下火焰原子吸收光谱法测定铅精粉中的高含量银[J]. 刘高令,姜贞贞,吴文清,王祝,邵蓓,邬国栋,李明礼. 岩矿测试. 2016(06) |
[4] |
电感耦合等离子体质谱直接测定化探样品中微量银[J]. 李永林. 西藏科技. 2016(08) |
相似文献(共20条)
[1] |
黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238. |
[2] | |
[3] |
李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200. |
[4] |
邢智, 漆亮. P507萃淋树脂分离-电感耦合等离子体质谱法快速测定化探样品中的银. 岩矿测试, 2013, 32(3): 398-401. |
[5] |
马新荣, 何红蓼, 杨红霞, 李冰. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫. 岩矿测试, 2003, (4): 241-247. |
[6] |
邢智, 漆亮. P507负载泡塑分离-电感耦合等离子体质谱法同时测定化探样品中银钨钼. 岩矿测试, 2014, 33(4): 486-490. |
[7] |
张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28. |
[8] |
尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196. |
[9] |
李冰, 马新荣, 韩丽荣. 稀氨水密封溶解—电感耦合等离子体质谱测定土壤沉积物及生物样品中的碘溴. 岩矿测试, 2003, (3): 174-178. |
[10] |
叶晨亮. 发射光谱法快速测定银锡铜铅锌钼铍. 岩矿测试, 2004, (3): 238-240. |
[11] |
龚伟. 原子吸收法测定化探样品中的银,镉,锂,钴和镍. 岩矿测试, 1989, (4): 317-319. |
[12] |
赵玲, 冯永明, 李胜生, 时晓露, 王金云. 碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡. 岩矿测试, 2010, 29(4): 355-358. |
[13] |
孙文军. 二苯硫脲泡塑富集-原子吸收光谱法连续测定化探样品中金和银. 岩矿测试, 2012, 31(5): 829-833. |
[14] |
佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147. |
[15] |
夏辉, 张永花, 李景文, 杨惠玲, 梁倩, 韩华云. 石墨炉原子吸收光谱法测定化探样中痕量银的方法改进. 岩矿测试, 2013, 32(1): 48-52. |
[16] |
徐进力, 邢夏, 唐瑞玲, 胡梦颖, 张鹏鹏, 白金峰, 张勤. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素. 岩矿测试, 2019, 38(4): 394-402. doi: 10.15898/j.cnki.11-2131/td.201812070131 |
[17] |
王君玉, 吴葆存, 李志伟, 韩敏, 钟莅湘. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素. 岩矿测试, 2011, 30(4): 440-445. |
[18] |
王岚, 杨丽芳, 谭西早, 武朝辉. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉. 岩矿测试, 2017, 36(6): 574-580. doi: 10.15898/j.cnki.11-2131/td.201703130032 |
[19] |
张保科, 温宏利, 王蕾, 马生凤, 巩爱华. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素. 岩矿测试, 2011, 30(6): 737-744. |
[20] |
于阗, 张连起, 陈小迪. 电感耦合等离子体发射光谱法和火焰原子吸收光谱法连续测定化探样品中12个元素. 岩矿测试, 2011, 30(1): 71-74. |
计量
- PDF下载量(1506)
- 文章访问量(2136)
- HTML全文浏览量(49)
- 被引次数(4)