【引用本文】 柳检, 罗立强, . As、Cd和Pb植物根系吸收途径和影响因素研究现状与进展[J]. 岩矿测试, 2015, 34(3): 269-277. doi: 10.15898/j.cnki.11-2131/td.2015.03.002
LIU Jian, LUO Li-qiang. Study Progress on the Root Uptake Pathway of As, Cd and Pb and Its Influence Factors[J]. Rock and Mineral Analysis, 2015, 34(3): 269-277. doi: 10.15898/j.cnki.11-2131/td.2015.03.002

As、Cd和Pb植物根系吸收途径和影响因素研究现状与进展

1. 

中国地质大学(武汉)材料与化学学院, 湖北 武汉 430074

2. 

国家地质实验测试中心, 北京 100037

收稿日期: 2015-03-18  修回日期: 2015-05-17  接受日期: 2015-05-20

作者简介: 柳检, 硕士研究生, 研究方向为生物地球化学. E-mail: liujian120129@126.com。

通讯作者: 罗立强, 博士, 研究员, 从事生物地球化学、分析化学研究. E-mail: luoliqiang@cags.ac.cn

Study Progress on the Root Uptake Pathway of As, Cd and Pb and Its Influence Factors

1. 

Faculty of Meterials Science and Chemistry, China University of Ceosciences (Wuhan), Wuhan 430074, China

2. 

National Research Center for Geoanalysis, Beijing 100037, China

Corresponding author: LUO Li-qiang, luoliqiang@cags.ac.cn

Received Date: 2015-03-18
Revised Date: 2015-05-17
Accepted Date: 2015-05-20

摘要:环境中的毒性元素被植物吸收后, 不仅危害植物生长, 还会通过生物链的传递危害人类健康。植物吸收毒性元素有根、茎、叶三种途径, 其中根系吸收最为重要。明晰毒性元素进入根细胞的途径和影响因素, 有助于阻控其进入植物, 降低食用风险。近年来, 在毒性元素根系吸收途径研究领域, 国际上主要开展了吸收动力学过程、转运蛋白识别和外界环境作用机制研究。本文从根系对As、Cd、Pb的吸收途径和影响因素两个方面, 对植物利用转运蛋白和离子通道跨膜转运过程、根际环境与共存元素的影响等进行了评述, 并认为在分子尺度下开展毒性元素细胞吸收动态过程、细胞响应机制和根际多因素作用机理研究是该领域未来发展方向, 同时推测As(Ⅲ)的外排机制与P类似, 且Pb2+利用了Ca2+通道转运至木质部。

关键词: 毒性元素, 植物根系, 吸收途径, 影响因素, 研究进展

Study Progress on the Root Uptake Pathway of As, Cd and Pb and Its Influence Factors

KEY WORDS: Toxic element, plant root system, uptake pathway, influence factor, research progress

本文参考文献

[1]

Schreck E, Dappe V, Sarret G, et al. Foliar or Root Exposures to Smelter Particles: Consequences for Lead Compartmentalization and Speciation in Plant Leaves[J].Science of the Total Environment, 2014, 476: 667-676.

[2]

Van der Vliet L, Peterson C, Hale B, et al. Cd Accumulation in Roots and Shoots of Durum Wheat: The Roles of Transpiration Rate and Apoplastic Bypass[J].Journal of Experimental Botany, 2007, 58(11): 2939-2947. doi: 10.1093/jxb/erm119

[3]

金枫, 王翠, 林海建, 等. 植物重金属转运蛋白研究进展[J]. 应用生态学报, 2010, 21(7): 1875-1882.

Jin F, Wang Q, Lin H J, et al. Heavy Metal Transport Proteins in Plants: A Review[J]. Chinese Journal of Applied Ecology, 2010, 21(7): 1875-1882.

[4]

Lavoie M, Campbell P G, Fortin C, et al. Extending the Biotic Ligand Model to Account for Positive and Negative Feedback Interactions between Cadmium and Zinc in a Freshwater Alga[J].Environmental Science & Technology, 2012, 46(21): 12129-12136.

[5]

Ding C, Zhang T, Wang X, et al. Prediction Model for Cadmium Transfer from Soil to Carrot (Daucus carota L.) and Its Application to Derive Soil Thresholds for Food Safety[J].Journal of Agricultural and Food Chemistry, 2013, 61(43): 10273-10282. doi: 10.1021/jf4029859

[6]

Vacul k M, Landberg T, Greger M, et al. Silicon Modifies Root Anatomy, and Uptake and Subcellular Distribution of Cadmium in Young Maize Plants[J].Annals of Botany, 2012, 110(2): 433-443. doi: 10.1093/aob/mcs039

[7]

Tripathi R D, Srivastava S, Mishra S, et al. Arsenic Hazards: Strategies for Tolerance and Remediation by Plants[J].TRENDS in Biotechnology, 2007, 25(4): 158-165. doi: 10.1016/j.tibtech.2007.02.003

[8]

Garg N, Singla P. Arsenic Toxicity in Crop Plants: Physiological Effects and Tolerance Mechanisms[J].Environmental Chemistry Letters, 2011, 9(3): 303-321. doi: 10.1007/s10311-011-0313-7

[9]

Benavides M P, Gallego S M, Tomaro M L, et al. Cadmium Toxicity in Plants[J].Brazilian Journal of Plant Physiology, 2005, 17(1): 21-34. doi: 10.1590/S1677-04202005000100003

[10]

Sharma P, Dubey R S. Lead Toxicity in Plants[J].Brazilian Journal of Plant Physiology, 2005, 17(1): 35-52. doi: 10.1590/S1677-04202005000100004

[11]

Rascio N, Navari-Izzo F. Heavy Metal Hyperaccumu-lating Plants: How and Why Do They Do It? And What Makes Them So Interesting?[J].Plant Science, 2011, 180(2): 169-181. doi: 10.1016/j.plantsci.2010.08.016

[12]

White P, Brown P. Plant Nutrition for Sustainable Development and Global Health[J].Annals of Botany, 2010, 105(7): 1073-1080. doi: 10.1093/aob/mcq085

[13]

Verbruggen N, Hermans C, Schat H, et al. Mechanisms to Cope with Arsenic or Cadmium Excess in Plants[J].Current Opinion in Plant Biology, 2009, 12(3): 364-372. doi: 10.1016/j.pbi.2009.05.001

[14]

Peralta-Videa J R, Lopez M L, Narayan M, et al. The Biochemistry of Environmental Heavy Metal Uptake by Plants: Implications for the Food Chain[J].The International Journal of Biochemistry & Cell Biology, 2009, 41(8): 1665-1677.

[15]

Kim D Y, Bovet L, Maeshima M, et al. The Abc Transporter AtPDR8 is a Cadmium Extrusion Pump Conferring Heavy Metal Resistance[J].The Plant Journal, 2007, 50(2): 207-218. doi: 10.1111/j.1365-313X.2007.03044.x

[16]

Morel M, Crouzet J, Gravot A, et al. AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis[J].Plant Physiology, 2009, 149(2): 894-904.

[17]

Mills R F, Francini A, Ferreira da Rocha P S, et al. The Plant P1B-type Atpase Athma4 Transports Zn and Cd and Plays a Role in Detoxification of Transition Metals Supplied at Elevated Levels[J].Febs Letters, 2005, 579(3): 783-791. doi: 10.1016/j.febslet.2004.12.040

[18]

Sterckeman T, Redjala T, Morel J L, et al. Influence of Exposure Solution Composition and of Plant Cadmium Content on Root Cadmium Short-term Uptake[J].Environmental and Experimental Botany, 2011, 74: 131-139. doi: 10.1016/j.envexpbot.2011.05.010

[19]

Ye J, Yan C, Liu J, et al. Effects of Silicon on the Distribution of Cadmium Compartmentation in Root Tips of Kandelia obovata (S[J].Environmental Pollution, 2012, 162: 369-373. doi: 10.1016/j.envpol.2011.12.002

[20]

Vacul k M, Konlechner C, Langer I, et al. Root Anatomy and Element Distribution Vary between Two Salix Caprea Isolates with Different Cd Accumulation Capacities[J].Environmental Pollution, 2012, 163: 117-126. doi: 10.1016/j.envpol.2011.12.031

[21]

Lux A, Martinka M, Vacul k M, et al. Root Responses to Cadmium in the Rhizosphere: A Review[J].Journal of Experimental Botany, 2011, 62(1): 21-37. doi: 10.1093/jxb/erq281

[22]

Meyers D E, Auchterlonie G J, Webb R I, et al. Uptake and Localisation of Lead in the Root System of Brassica juncea[J].Environmental Pollution, 2008, 153(2): 323-332. doi: 10.1016/j.envpol.2007.08.029

[23]

Zhao F J, McGrath S P, Meharg A A, et al. Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies[J].Annual Review of Plant Biology, 2010, 61: 535-559. doi: 10.1146/annurev-arplant-042809-112152

[24]

Li R Y, Ago Y, Liu W J, et al. The Rice Aquaporin Lsi1 Mediates Uptake of Methylated Arsenic Species[J].Plant Physiology, 2009, 150(4): 2071-2080. doi: 10.1104/pp.109.140350

[25]

Mansour N M, Sawhney M, Tamang D G, et al. The Bile/Arsenite/Riboflavin Transporter (BART) Superfamily[J].Febs Journal, 2007, 274(3): 612-629. doi: 10.1111/ejb.2007.274.issue-3

[26]

Song W Y, Park J, Mendoza-C zatl D G, et al. Arsenic Tolerance in Arabidopsis is Mediated by Two ABCC-type Phytochelatin Transporters[J].Proceedings of the National Academy of Sciences, 2010, 107(49): 21187-21192. doi: 10.1073/pnas.1013964107

[27]

Ma J F, Yamaji N, Mitani N, et al. Transporters of Arsenite in Rice and Their Role in Arsenic Accumulation in Rice Grain[J].Proceedings of the National Academy of Sciences, 2008, 105(29): 9931-9935. doi: 10.1073/pnas.0802361105

[28]

Mendoza-C zatl D G, Jobe T O, Hauser F, et al. Long-distance Transport, Vacuolar Sequestration, Tolerance, and Transcriptional Responses Induced by Cadmium and Arsenic[J].Current Opinion in Plant Biology, 2011, 14(5): 554-562. doi: 10.1016/j.pbi.2011.07.004

[29]

刘文菊, 赵方杰. 植物砷吸收与代谢的研究进展[J]. 环境化学, 2011, 30(1): 56-62.

Liu W J, Zhao F J. A Brief Review of Arsenic Uptake and Metabolism in Plant[J]. Environmental Chemistry, 2011, 30(1): 56-62.

[30]

Shin H, Shin H S, Dewbre G R, et al. Phosphate Transport in Arabidopsis: Pht1; 1 and Pht1; 4 Play a Major Role in Phosphate Acquisition from Both Low-and High-phosphate Environments[J].The Plant Journal, 2004, 39(4): 629-642. doi: 10.1111/tpj.2004.39.issue-4

[31]

Tudoreanu L, Phillips C J. Empirical Models of Cadmium Accumulation in Maize, Rye Grass and Soya Bean Plants[J].Journal of the Science of Food and Agriculture, 2004, 84(8): 845-852. doi: 10.1002/(ISSN)1097-0010

[32]

Sasaki A, Yamaji N, Yokosho K, et al. NRAMP5 is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice[J].The Plant Cell Online, 2012, 24(5): 2155-2167. doi: 10.1105/tpc.112.096925

[33]

Curie C, Cassin G, Couch D, et al. Metal Movement within the Plant: Contribution of Nicotianamine and Yellow Stripe 1-like Transporters[J].Annals of Botany, 2009, 103(1): 1-11. doi: 10.1093/aob/mcn207

[34]

Korenkov V, King B, Hirschi K, et al. Root-selective Expression of AtCAX4 and AtCAX2 Results in Reduced Lamina Cadmium in Field-grown Nicotiana Tabacum L[J].Plant Biotechnology Journal, 2009, 7(3): 219-226. doi: 10.1111/pbi.2009.7.issue-3

[35]

Wojas S, Hennig J, Plaza S, et al. Ectopic Expression of Arabidopsis ABC Transporter MRM7 Modifies Cadmium Root-to-Shoot Transport and Accumulation[J].Environmental Pollution, 2009, 157(10): 2781-2789. doi: 10.1016/j.envpol.2009.04.024

[36]

Eren E, Arg ello J M. Arabidopsis HMA2, a Divalent Heavy Metal-Transporting P1B-type Atpase, is Involved in Cytoplasmic Zn2+ Homeostasis[J].Plant Physiology, 2004, 136(3): 3712-3723. doi: 10.1104/pp.104.046292

[37]

DiDonato R J, Roberts L A, Sanderson T, et al. Arabidopsis Yellow Stripe-Like2 (YSL2): A Metal-regulated Gene Encoding a Plasma Membrane Transporter of Nicotianamine-metal Complexes[J].The Plant Journal, 2004, 39(3): 403-414. doi: 10.1111/tpj.2004.39.issue-3

[38]

Arazi T, Sunkar R, Kaplan B, et al. A Tobacco Plasma Membrane Calmodulin-binding Transporter Confers Ni2+ Tolerance and Pb2+ Hypersensitivity in Transgenic Plants[J].The Plant Journal, 1999, 20(2): 171-182. doi: 10.1046/j.1365-313x.1999.00588.x

[39]

Sunkar R, Kaplan B, Bouche N, et al. Expression of a Truncated Tobacco NtCBP4 Channel in Transgenic Plants and Disruption of the Homologous Arabidopsis CNGC1 Gene Confer Pb2+ Tolerance[J].The Plant Journal, 2000, 24(4): 533-542. doi: 10.1046/j.1365-313x.2000.00901.x

[40]

Lee M, Lee K, Lee J, et al. AtPDR12 Contributes to Lead Resistance in Arabidopsis[J].Plant Physiology, 2005, 138(2): 827-836. doi: 10.1104/pp.104.058107

[41]

Lee S, Kim Y Y, Lee Y, et al. Rice P1B-type Heavy-metal Atpase, OsHMA9, is a Metal Efflux Protein[J].Plant Physiology, 2007, 145(3): 831-842. doi: 10.1104/pp.107.102236

[42]

Isayenkov S V, Maathuis F J. The Arabidopsis Thaliana Aquaglyceroporin AtNIP7; 1 is a Pathway for Arsenite Uptake[J].Febs Letters, 2008, 582(11): 1625-1628. doi: 10.1016/j.febslet.2008.04.022

[43]

Bienert G P, Thorsen M, Sch ssler M D, et al. A Subgroup of Plant Aquaporins Facilitate the Bi-directional Diffusion of As(OH)3 and Sb(OH)3 across Membranes[J].BMC Biology, 2008, 6(1): 26. doi: 10.1186/1741-7007-6-26

[44]

Pedas P, Ytting C K, Fuglsang A T, et al. Manganese Efficiency in Barley: Identification and Characterization of the Metal Ion Transporter HvIRT1[J].Plant Physiology, 2008, 148(1): 455-466. doi: 10.1104/pp.108.118851

[45]

Lee S, An G. Over-expression of OsIRT1 Leads to Increased Iron and Zinc Accumulations in Rice[J].Plant, Cell & Environment, 2009, 32(4): 408-416.

[46]

Vert G, Grotz N, D dald champ F, et al. Irt1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth[J].The Plant Cell Online, 2002, 14(6): 1223-1233. doi: 10.1105/tpc.001388

[47]

Antosiewicz D M, Hennig J. Overexpression of LCT1 in Tobacco Enhances the Protective Action of Calcium against Cadmium Toxicity[J].Environmental Pollution, 2004, 129(2): 237-245. doi: 10.1016/j.envpol.2003.10.025

[48]

Takahashi R, Ishimaru Y, Senoura T, et al. The OsNRAMP1 Iron Transporter is Involved in Cd Accumulation in Rice[J].Journal of Experimental Botany, 2011, 62(14): 4843-4850. doi: 10.1093/jxb/err136

[49]

Lanquar V, Leli vre F, Bolte S, et al. Mobilization of Vacuolar Iron by AtNRAMP3 and AtNRAMP4 is Essential for Seed Germination on Low Iron[J].The Embo Journal, 2005, 24(23): 4041-4051. doi: 10.1038/sj.emboj.7600864

[50]

Ueno D, Milner M J, Yamaji N, et al. Elevated Expression of TcHMA3 Plays a Key Role in the Extreme Cd Tolerance in a Cd-hyperaccumulating Ecotype of Thlaspi Caerulescens[J].The Plant Journal, 2011, 66(5): 852-862. doi: 10.1111/j.1365-313X.2011.04548.x

[51]

Miyadate H, Adachi S, Hiraizumi A, et al. OsHMA3, a P1B-type of Atpase Affects Root-to-Shoot Cadmium Translocation in Rice by Mediating Efflux into Vacuoles[J].New Phytologist, 2011, 189(1): 190-199. doi: 10.1111/j.1469-8137.2010.03459.x

[52]

Yuan L, Yang S, Liu B, et al. Molecular Characterization of a Rice Metal Tolerance Protein, Osmtp1[J].Plant Cell Reports, 2012, 31(1): 67-79. doi: 10.1007/s00299-011-1140-9

[53]

Wojas S, Ruszczy & #324;ska A, Bulska E, et al. Ca2+-dependent Plant Response to Pb2+ is Regulated by LCT1[J].Environmental Pollution, 2007, 147(3): 584-592. doi: 10.1016/j.envpol.2006.10.012

[54]

Rosas-Castor J M, Guzm & #225;n-Mar J L, Alfaro-Barbosa J M, et al. Evaluation of the Transfer of Soil Arsenic to Maize Crops in Suburban Areas of San Luis Potosi, Mexico[J].Science of Total Environment, 2014, 497-498: 153-162. doi: 10.1016/j.scitotenv.2014.07.072

[55]

Pourrut B, Perchet G, Silvestre J, et al. Potential Role of Nadph-oxidase in Early Steps of Lead-induced Oxidative Burst in Vicia Faba Roots[J].Journal of Plant Physiology, 2008, 165(6): 571-579. doi: 10.1016/j.jplph.2007.07.016

[56] Pourrut B,Shahid M,Dumat C. Lead Uptake, Toxicity, and Detoxification in Plants[M] . New York: Springer, 2011: 113-136.
[57]

Samardakiewicz S, Woiny A. Woiny A.The Distribution of Lead in Duckweed (Lemna minor L.) Root Tip[J].Plant and Soil, 2000, 226(1): 107-111. doi: 10.1023/A:1026440730839

[58]

Marmiroli M, Pigoni V, Savo-Sardaro M, et al. Pigoni V, Savo-Sardaro M, et al.The Effect of Silicon on the Uptake and Translocation of Arsenic in Tomato (Solanum lycopersicum L.)[J].Environmental and Experimental Botany, 2014, 99: 9-17. doi: 10.1016/j.envexpbot.2013.10.016

[59]

Wang X, Ma L Q, Rathinasabapathi B, et al. Rathinasabapathi B, et al.Uptake and Translocation of Arsenite and Arsenate by Pteris vittata L.: Effects of Silicon, Boron and Mercury[J].Environmental and Experimental Botany, 2010, 68(2): 222-229. doi: 10.1016/j.envexpbot.2009.11.006

[60]

Su Y, McGrath S, Zhu Y, et al. Highly Efficient Xylem Transport of Arsenite in the Arsenic Hyperaccumulator Pteris Vittata[J].New Phytologist, 2008, 180(2): 434-441. doi: 10.1111/nph.2008.180.issue-2

[61]

Lessl J T, Ma L Q. Sparingly-Soluble Phosphate Rock Induced Significant Plant Growth and Arsenic Uptake by Pteris Vittata from Three Contaminated Soils[J].Environmental Science & Technology, 2013, 47(10): 5311-5318.

[62]

Zorrig W, Shahzad Z, Abdelly C, et al. Calcium Enhances Cadmium Tolerance and Decreases Cadmium Accumulation in Lettuce (Lactuca sativa)[J].African Journal of Biotechnology, 2012, 11(34): 8441-8448.

[63]

Kim Y Y, Yang Y Y, Lee Y, et al. Pb and Cd Uptake in Rice Roots[J].Physiologia Plantarum, 2002, 116(3): 368-372. doi: 10.1034/j.1399-3054.2002.1160312.x

[64]

Srivastava M, Ma L Q, Rathinasabapathi B, et al. Effects of Selenium on Arsenic Uptake in Arsenic Hyperaccumulator Pteris Vittata L[J].Bioresource Technology, 2009, 100(3): 1115-1121. doi: 10.1016/j.biortech.2008.08.026

[65]

Malik J A, Goel S, Kaur N, et al. Kaur N, et al.Selenium Antagonises the Toxic Effects of Arsenic on Mungbean (Phaseolus aureus roxb.) Plants by Restricting Its Uptake and Enhancing the Antioxidative and Detoxification Mechanisms[J].Environmental and Experimental Botany, 2012, 77: 242-248. doi: 10.1016/j.envexpbot.2011.12.001

[66]

Israr M, Jewell A, Kumar D, et al. Interactive Effects of Lead, Copper, Nickel and Zinc on Growth, Metal Uptake and Antioxidative Metabolism of Sesbania Drummondii[J].Journal of Hazardous Materials, 2011, 186(2): 1520-1526.

[67]

Zhao K, Liu X, Xu J, et al. Heavy Metal Contaminations in a Soil-rice System: Identification of Spatial Dependence in Relation to Soil Properties of Paddy Fields[J].Journal of Hazardous Materials, 2010, 181(1): 778-787.

[68]

Liu K, L J, He W, et al. Major Factors Influencing Cadmium Uptake from the Soil into Wheat Plants[J].Ecotoxicology and Environmental Safety, 2015, 113: 207-213. doi: 10.1016/j.ecoenv.2014.12.005

[69]

Somenahally A C, Hollister E B, Yan W, et al. Water Management Impacts on Arsenic Speciation and Iron-reducing Bacteria in Contrasting Rice-rhizosphere Compartments[J].Environmental Science & Technology, 2011, 45(19): 8328-8335.

[70]

Laperche V, Logan T J, Gaddam P, et al. Effect of Apatite Amendments on Plant Uptake of Lead from Contaminated Soil[J].Environmental Science & Technology, 1997, 31(10): 2745-2753.

[71]

Haoliang L, Chongling Y, Jingchun L, et al. Chongling Y, Jingchun L.Low-molecular-weight Organic Acids Exuded by Mangrove (Kandelia candel (L.) Druce) Roots and Their Effect on Cadmium Species Change in the Rhizosphere[J].Environmental and Experimental Botany, 2007, 61(2): 159-166. doi: 10.1016/j.envexpbot.2007.05.007

[72]

Gonzaga M I S, Ma L Q, Santos J A G, et al. Rhizosphere Characteristics of Two Arsenic Hyperaccumulating Pteris Ferns[J].Science of the Total Environment, 2009, 407(16): 4711-4716. doi: 10.1016/j.scitotenv.2009.04.037

[73]

Wang H, Shan X, Liu T, et al. Organic Acids Enhance the Uptake of Lead by Wheat Roots[J].Planta, 2007, 225(6): 1483-1494. doi: 10.1007/s00425-006-0433-7

引证文献(本文共被引用7次)

[1]

不同生育期低浓度Cd胁迫对水稻Cd积累影响[A]. 彭鸥,叶长城,张淼,许蒙,张燕,铁柏清,刘孝利,陈喆.2016中国环境科学学会学术年会论文集(第四卷)[C]. 2016

[2]

福建沿海地区土壤-稻谷重金属含量关系与影响因素研究[J]. 王腾云,周国华,孙彬彬,贺灵,曾道明,陈亚东,叶荣.  岩矿测试. 2016(03)

[3]

稻米镉关键积累时期研究[J]. 彭鸥,铁柏清,叶长城,张淼,刘孝利,魏祥东,孙健.  农业资源与环境学报. 2017(03)

[4]

敖汉旗地区地球化学特征及有毒元素潜在生态危害性研究[D]. 刘强.吉林大学 2016

[5]

改性桑树叶吸附材料对废水中Cd(Ⅱ)的吸附性能研究[J]. 许芳,张利平,程先忠,魏孝.  岩矿测试. 2016(01)

[6]

水稻Cd吸收、转运机理研究进展[J]. 周志波,易亚科,陈光辉.  作物杂志. 2017(01)

[7]

基于地球化学数据的有毒元素潜在生态危害评价研究——以内蒙古自治区敖汉旗为例[J]. 刘强,孟玉妥,李伟,王长琪,陈井胜.  地质与资源. 2016(04)

相似文献(共20条)

[1]

周瑶琪, 陈勇, 葛云锦. 流体包裹体成分测定的低温相变和显微拉曼光谱分析技术研究进展. 岩矿测试, 2008, 27(3): 207-210.

[2]

杨红霞, 刘崴, 李冰. 碘分析方法研究进展. 岩矿测试, 2008, 27(2): 127-136.

[3]

邓天龙, 吴怡, 徐青, 廖梦霞. 水环境中氮磷形态分析方法研究进展. 岩矿测试, 2008, 27(2): 137-141.

[4]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[5]

曹容浩. 福建省龙海市表层土壤硒含量及影响因素研究. 岩矿测试, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

[6]

王腾云, 周国华, 孙彬彬, 贺灵, 曾道明, 陈亚东, 叶荣. 福建沿海地区土壤-稻谷重金属含量关系与影响因素研究. 岩矿测试, 2016, 35(3): 295-301. doi: 10.15898/j.cnki.11-2131/td.2016.03.013

[7]

王世玉, 刘菲, 吴文勇, 尹世阳, 刘玉龙, 陈亮, 张伟, 陈会会. 影响12种壬基酚同分异构体液液萃取效率的因素研究. 岩矿测试, 2014, 33(4): 570-577.

[8]

王昶. 缅甸翡翠研究进展. 岩矿测试, 2009, 28(5): 457-461.

[9]

吴昆明, 郭华明, 魏朝俊. 改性磁铁矿对水体中砷的吸附特性研究. 岩矿测试, 2017, 36(6): 624-632. doi: 10.15898/j.cnki.11-2131/td.201709110147

[10]

黄园英, 袁欣, 王倩, 罗松光, 刘晓端. 纳米锌去除水体中As(Ⅲ)吸附动力学和影响因素. 岩矿测试, 2013, 32(5): 759-766.

[11]

张体强, 胡树国, 韩桥. 大气压电离质谱及其用于超高纯气体分析的研究进展. 岩矿测试, 2014, 33(6): 775-781.

[12]

左海英, 张琳, 刘菲, 桂建业. 水中挥发性有机物分析的影响因素和常见问题解决办法. 岩矿测试, 2013, 32(1): 124-127.

[13]

李明礼, 柳诚, 王祝, 邬国栋, 夏鹏超. 地下水常见无机污染物研究进展. 岩矿测试, 2010, 29(5): 565-570.

[14]

刘婷琳, 马名扬, 胡耀国, 彭四清. 弱碱性土有效硫测定影响因素的探讨. 岩矿测试, 2011, 30(2): 182-185.

[15]

杨佳佳, 吴淑琪, 佟玲. 多氯联苯的环境特性及分析测试进展. 岩矿测试, 2009, 28(5): 444-451.

[16]

何佳乐, 潘忠习, 冉敬. 激光拉曼光谱法在单个流体包裹体中的应用进展. 岩矿测试, 2015, 34(4): 383-391. doi: 10.15898/j.cnki.11-2131/td.2015.04.002

[17]

祖文川, 汪雨, 武彦文, 陈舜琮. 电化学氢化物发生技术在原子光谱分析领域的应用进展. 岩矿测试, 2014, 33(2): 168-177.

[18]

吕明, 王玉岭, 李广平. 脆性岩石单轴压缩变形强度的试验. 岩矿测试, 2005, (1): 71-74.

[19]

沈亚婷. 土壤溶解性有机质对植物吸收-输送-贮存重金属的影响研究现状与进展. 岩矿测试, 2012, 31(4): 571-575.

[20]

焦杏春, 叶传永, 杨永亮, 安丽华. 作物根系-土壤系统中滴滴涕类化合物动态及影响因素. 岩矿测试, 2009, 28(6): 514-517.

计量
  • PDF下载量(1787)
  • 文章访问量(1505)
  • HTML全文浏览量(14)
  • 被引次数(7)
目录

Figures And Tables

As、Cd和Pb植物根系吸收途径和影响因素研究现状与进展

柳检, 罗立强