中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

汪寅夫, 李清, 刘琦, 迟广成, 伍月, 胡建飞. X射线衍射和电子探针技术在矿物药雄黄鉴定及质量评价中的应用[J]. 岩矿测试, 2014, 33(5): 706-713.
引用本文: 汪寅夫, 李清, 刘琦, 迟广成, 伍月, 胡建飞. X射线衍射和电子探针技术在矿物药雄黄鉴定及质量评价中的应用[J]. 岩矿测试, 2014, 33(5): 706-713.
Yin-fu WANG, Qing LI, Qi LIU, Guang-cheng CHI, Yue WU, Jian-fei HU. XRD and Electron Microprobe Method in Mineral Drug Realgar Identification and Quality Evaluation[J]. Rock and Mineral Analysis, 2014, 33(5): 706-713.
Citation: Yin-fu WANG, Qing LI, Qi LIU, Guang-cheng CHI, Yue WU, Jian-fei HU. XRD and Electron Microprobe Method in Mineral Drug Realgar Identification and Quality Evaluation[J]. Rock and Mineral Analysis, 2014, 33(5): 706-713.

X射线衍射和电子探针技术在矿物药雄黄鉴定及质量评价中的应用

XRD and Electron Microprobe Method in Mineral Drug Realgar Identification and Quality Evaluation

  • 摘要: 雄黄是我国常用的矿物类中药,由于晶体空间结构不同,可分为α雄黄(AsS)和β雄黄(As4S4)。雄黄受氧化作用会产生剧毒物质砒霜(As2O3),其中β雄黄因空间结构关系更易被氧化,因此对矿物药雄黄的成分鉴定和质量评价具有重要的意义。常用的分析雄黄中砷及其他元素的方法(原子吸收光谱法、电感耦合等离子体质谱法、高效液相色谱-质谱法等)是通过测定总砷、价态砷和其他相关元素实现对雄黄的鉴别和有害成分的检测,分析过程复杂,试剂消耗大,需对样品进行破坏,而且不能直接对矿物结构进行判定。本文采用薄片鉴定、X射线衍射和电子探针对来自代表性生产地贵州思南和湖南石门的6种药用雄黄样品进行鉴别和质量评价。首先通过薄片鉴定初步确定雄黄样品的主要成分及伴生矿物,进一步利用X射线粉晶衍射和电子探针技术对雄黄的主要成分、伴生矿物进行半定量分析,再利用电子探针研究雄黄中As、S、O等元素的赋存状态,在这些技术综合鉴定的基础上,对收集的雄黄进行质量评价。分析结果显示:产自贵州思南的1号矿药由石英(82.8%)、方解石(9.5%)和白云石(7.7%)组成,2号矿药由α雄黄(64.7%)和石英(35.3%)组成;产自湖南石门的6号矿药由β雄黄(86.5%)和电气石(13.5%)组成,3号和4号矿药由α雄黄单矿物组成,5号矿药由β雄黄单矿物组成,3号、4号和5号三个样品中As含量大于70%,符合药典规定;电子探针分析样品中均未检测到砒霜,总体上表明湖南产的雄黄品质较高。研究表明,X射线粉晶衍射法利用了衍射图谱与晶体结构的一一对应性,找到不同矿物药样品的专属特性,而对于多组分矿物药样品,只要混合组分恒定,其衍射图谱就相对稳定,具有指纹特征;电子探针利用As、O等元素的赋存状态,可以有效地对雄黄的质量进行评价。X射线衍射和电子探针技术的结合用于鉴定雄黄矿物药是一种极为有效、可行的办法,与传统方法相比更为快速、经济。

     

    Abstract: Realgar is a common mineral type of Chinese medicine in China. Due to the difference in crystal spatial structures, it can be divided into α realgar (AsS) and β realgar (As4S4). Realgar was oxidated to produce highly toxic substance arsenic (As2O3), whereas β realgar was more susceptible to oxidation due to its spatial structure. Therefore, ingredient identification and quality evaluation of mineral medicine realgar has an important significance. Common methods of arsenic and other elements in realgar (Atomic Absorption Spectrometry, Inductively Coupled Plasma Mass Spectrometry, High Performance Liquid Chromatography-Mass Spectrometry, etc.) is determined by measuring total arsenic, arsenic and other relevant valence elements to achieve the realgar identification and detection of harmful ingredients. The analysis process is complex, the consumption of reagent is large, and it could destroy the sample, but couldn't directly determine the structure of the mineral. In this paper, thin section identification, X-ray Diffraction and Electron Microprobe analysis were used to identify and quality evaluate with six kinds of medicinal realgar samples from representative producer in Sinan, Guizhou and Shimen, Hunan. Firstly, the main component and associated minerals of realgar samples were identified by thin section identification, further use of X-ray Powder Diffraction and Electron Microprobe analysis techniques to study main ingredient and semi-quantitative analysis of associated minerals. Secondly, the occurrence status of As, S and O in realgar was studied by using Electron Probe. The results show: No.1 mineral medicine from Sinan, Guizhou are composed by quartz (82.8%), calcite (9.5%) and dolomite (7.7%), with the No.2 mineral medicine are composed by α realgar (64.7%) and quartz (35.3%). The No.6 mineral medicine from Shimen, Hunan are composed by β realgar (86.5%) and tourmaline (13.5%), the No.3 and No.4 realgar are composed by α realgar single mineral, the No.5 mineral medicine are composed by β realgar single mineral. The As content in No.3, No.4 and No.5 samples is more than 70%, complied with Pharmacopoeia. Electron Microprobe analysis did not detect arsenic in the samples. Overall, realgars from Hunan have better quality. Studies have shown that, according to correspondence between diffraction patterns and crystal structure, exclusive characteristics of different samples of mineral drugs were found by X-ray Powder Diffraction method. Furthermore, drugs for multi-component mineral samples, as long as the mixing of the components is constant, its diffraction pattern is relatively stable, which is a fingerprint characteristics. Occurrence status study of As, O and other elements can effectively evaluate the quality of realgar by Electron Microprobe. Combined with X-ray Diffraction and Electron Microprobe techniques for the identification of realgar mineral drugs is an extremely effective and feasible approach, compared with the traditional method, it is more quickly and economically.

     

/

返回文章
返回