中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

董学林,向兆,贾正勋,等. 湿法球磨制备超细地质样品及取样量探究[J]. 岩矿测试,2023,42(5):1052−1061. DOI: 10.15898/j.ykcs.202307310110
引用本文: 董学林,向兆,贾正勋,等. 湿法球磨制备超细地质样品及取样量探究[J]. 岩矿测试,2023,42(5):1052−1061. DOI: 10.15898/j.ykcs.202307310110
DONG Xuelin,XIANG Zhao,JIA Zhengxun,et al. Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples[J]. Rock and Mineral Analysis,2023,42(5):1052−1061. DOI: 10.15898/j.ykcs.202307310110
Citation: DONG Xuelin,XIANG Zhao,JIA Zhengxun,et al. Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples[J]. Rock and Mineral Analysis,2023,42(5):1052−1061. DOI: 10.15898/j.ykcs.202307310110

湿法球磨制备超细地质样品及取样量探究

Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples

  • 摘要: 当前实验室制备的地质样品存在大颗粒微粒,影响了样品代表性和分析结果的准确度,制备超细样品是有效的解决办法。本文建立了水为助磨剂,湿法球磨制备超细地质样品的方法。结果表明,氧化锆或碳化钨材质的球磨罐会污染样品中锆、钨及钴等微量元素,而玛瑙材质的球磨罐污染样品的风险较小;采用玛瑙材质的球磨罐,20g样品,液固比为1∶1,磨球配置为大8颗、中16颗、小48颗,球磨时间30min,运用该方法对四种代表性样品(岩石、土壤、沉积物及稀土矿石)进行球磨,粒度检测结果表明,球磨后的样品粒度均达到1000目;对60件未知基质类型的样品进行湿法球磨后,D50均小于5μm,D90均小于19μm,表明该方法具有一定的适用性;微观形貌研究表明,球磨制备的样品,大颗粒微粒显著减少,颗粒分布更加均匀;对球磨后的岩石标准物质(GBW07104)进行了取样量试验,所检测的46种元素结果进行统计,除Mo、Cd、Cr等元素外,取样量可减少至2mg;制备的超细样品与电感耦合等离子体质谱(ICP-MS)技术联用,可发挥ICP-MS高灵敏度的效能,同时提高检测效率、减少环境污染。

     

    Abstract:
    BACKGROUND At present, there are large particles in geological samples prepared in the laboratory, which affect the representativeness of the samples and the accuracy of the analysis results1-3. With the rapid development of modern analytical instruments, analytical methods based on inductively coupled plasma-mass spectrometry (ICP-MS) have been widely used in laboratories across the country for the simultaneous determination of multiple elements in geological samples due to their low detection limit, high analytical flux, and wide linear range10-14. Its characteristics of high sensitivity and analytical accuracy, small sample injection volume, and high requirements for sample representativeness are incompatible with the sample preparation technology that serves as the foundation of laboratory analysis work. Therefore, there is an urgent need to research and develop sample preparation methods that reduce sample size and improve representativeness, in order to meet the needs of ultra trace element detection.  The main methods for preparing ultrafine geological samples include air flow pulverization and ball milling. Air flow pulverization is widely used in the preparation of geological standard material samples, but the sample size prepared in one step is large, which is prone to sample grading and requires secondary mixing16-17. Dry ball milling is a common geological sample preparation method in laboratories. Prolonging the ball milling time is beneficial for sample refinement, but it can easily cause contamination by the characteristic elements of the ball milling tank material. Wet ball milling can form a slurry between the sample and the grinding aid, which is conducive to the flow of the sample and the grinding ball during the ball milling process, increasing the friction between them, and achieving the goal of further refining the sample21.
    OBJECTIVES To establish a method of preparing ultra-fine geological samples by wet ball grinding with water as the grinding aid.
    METHODS Weigh 20g samples into the ball mill tank made of agate material, and add 20mL water and grinding balls (8 pieces of Φ10mm balls, 16 pieces of Φ5mm balls, and 48 pieces of Φ2mm balls). Cover the lid, and grind at 300r/min for 30min. XRD were used to characterize the crystal state of the minerals during ball milling. The sampling quantity of different elements was explored by ICP-OES and ICP-MS.
    RESULTS (1) A method for preparing ultrafine geological samples by wet ball grinding was established in laboratory. Agate tanks were used for ball milling, and there was a low risk of sample contamination. When water was used as a liquid grinding aid and the ratio of solid to liquid (m/V) was 1, the grinding effect was better. (2) Four representative samples (rock, soil, sediment, and rare earth ore) were ball milled using this method, and the test results showed that the particle size of the samples after ball milling reached 1000 mesh. After wet ball milling of 60 samples of unknown matrix types, the D50 was less than 5μm, and the D90 was less than 19μm. (3) The grinding aid can reduce the surface energy of the grinding material and improve the grinding efficiency. The micromorphology of the samples prepared by ball milling showed that the large particles were significantly reduced, wet ball milling makes the particle size of each sample finer and the particle distribution more uniform, and the maximum particle diameter was reduced by about 5 times. The sampling quantity test was carried out on the rock sample (GBW07104) after ball milling, and 46 elements results were statistically analyzed. The sampling quantity was reduced to 2mg except for Mo, Cd, Cr.
    CONCLUSIONS After ball milling, the large particles are significantly reduced and the particle distribution is more uniform, which better solves the problem of ultrafine preparation of relevant types of samples in the laboratory, but there are some problems such as a long sample preparation process. The ultra-fine preparation technology of geological samples, combined with XRF and LA-ICP-MS, establishes a green analysis method of solid sampling with small sample quantity, and assists in the development of the detection industry.

     

/

返回文章
返回