中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

黄华谷, 黄铁兰, 周兆帅, 屈文俊. 广东三个离子吸附型稀土矿的地球化学特征及开采现状[J]. 岩矿测试, 2014, 33(5): 737-746.
引用本文: 黄华谷, 黄铁兰, 周兆帅, 屈文俊. 广东三个离子吸附型稀土矿的地球化学特征及开采现状[J]. 岩矿测试, 2014, 33(5): 737-746.
Hua-gu HUANG, Tie-lan HUANG, Zhao-shuai ZHOU, Wen-jun QU. Mining Situation and Geochemistry Characteristics of Three Ion Adsorption Rare-Earth Deposit in Guangdong Province[J]. Rock and Mineral Analysis, 2014, 33(5): 737-746.
Citation: Hua-gu HUANG, Tie-lan HUANG, Zhao-shuai ZHOU, Wen-jun QU. Mining Situation and Geochemistry Characteristics of Three Ion Adsorption Rare-Earth Deposit in Guangdong Province[J]. Rock and Mineral Analysis, 2014, 33(5): 737-746.

广东三个离子吸附型稀土矿的地球化学特征及开采现状

Mining Situation and Geochemistry Characteristics of Three Ion Adsorption Rare-Earth Deposit in Guangdong Province

  • 摘要: 广东稀土资源丰富,资源种类较全,但真正具有工业意义只有离子吸附型稀土矿。已有调查表明广东富有重稀土资源,重稀土资源量约占离子吸附型稀土资源总量的1/3。广东现仅有采矿权企业三家(简称A、B、C矿区),2013年度开采指标REO(稀土氧化物含量)仅为2200吨,但广东省离子型稀土年分离能力超万吨,供需矛盾突出。为了解广东稀土矿开采现状,本文在具备采矿证的A、B和C三个矿区采集风化壳剖面和尾砂样品,利用电感耦合等离子体质谱法(ICP-MS)分析稀土元素、微量元素和相关有用元素的含量,获得了一批新数据,研究矿区的地球化学特征和资源潜力。数据分析表明:① 广东稀土资源非常丰富,实际资源量与现有报告评估的资源量有着极大的差别,相差两个数量级。② 三个稀土矿的风化壳原矿的轻稀土/重稀土的比值为1.8~6.6,说明三个稀土矿均为轻稀土矿;只开采轻稀土矿,与市场需求和广东富有重稀土资源的情况都不相符,年稀土开采指标与年冶炼分离能力也存在极大缺口,无论资源类型和数量都无法满足经济对稀土资源的巨大需求,建议考虑适当增加稀土矿证和开采指标。③ A矿区和C矿区的腐植层和半风化层稀土含量都不高,成矿部位在全风化层,成矿模式为浅伏式;B矿区的腐植层和全风化层稀土含量高(最高超过0.3%),为成矿部位,成矿模式为表露式。④ 风化壳采矿位置尚需根据市场情况调整,减少矿体的漏采,尾砂稀土资源有待回收利用。⑤ 风化壳和尾砂样品微量元素含量相对陆壳丰度,多数元素富集倍数低于10,部分元素甚至出现亏损,没有回收利用价值。

     

    Abstract: Guangdong has abundant kinds of rare earth element resources. The resource which could satisfy the industry exploitation is only the ion adsorption type of rare earth ores. According to previous survey, Guangdong possesses heavy rare earth element resource, which is about 1/3 of total ion adsorption type ore resource. Recently, there are only three companies owning mining rights (referred to as A, B, C mine quarry, respectively). Mining quota of REO (rare earth oxides) for 2013 was only 2200 tons, while Annual ionic rare earth separation capacity was more than 10000 tons. The contradiction between supply and demand is outstanding. In order to reveal the exploitation situation of the rare-earth ores in Guangdong, we collected samples from weathering crust profiles and tailings of A, B and C mining areas. Additionally, in order to study the geochemical characteristics and their resource potential, we analyzed the rare earth elements, trace elements and associated elements by ICP-MS. Our results show that: (1) Guangdong has quite rich resource in rare earth ore, and the resource we calculated is two more orders of magnitude than previous official calculation. (2) The LREEs/HREEs ratios from three weathering crust of rare earth ore areas all ranges from 1.8 to 6.6, implying these three ores are enriched in LREEs, rather than HREEs. However, only mining the LREE ore is incompatible with market demand and the enrichment of heavy rare earth resources in Guangdong. Furthermore, there is a great gap between the rare earth mining quota and smelting separation ability. Therefore, we suggest to raise more mining right licenses and quota for mining rare earth ore properly. (3) The rare earth content of the humus layer and semi-weathered layer was not high in A and C mining areas, which is surface magnetic type metallogenic model and mineralization zone was located in weathered layer. In contrast, the rare earth content of humic layer and completely weathered layer was high (more than 0.3%) in B mining area, which is shallow type metallogenic model. (4) We need to adjust the mining area of weathering crusts according to market demand to reduce the mining leakage and recycle tailings of rare earth resources. (5) The enrichment factors of trace element content in weathering crusts and tailings are less than 10, compared with continental crust abundance, even some elements are depleted. Accordingly, we suggest it is not useful for recycling the trace elements from weathering crusts and tailings.

     

/

返回文章
返回