中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

孟郁苗, 胡瑞忠, 高剑峰, 毕献武, 黄小文. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339-348. DOI: 10.15898/j.cnki.11-2131/td.2016.04.002
引用本文: 孟郁苗, 胡瑞忠, 高剑峰, 毕献武, 黄小文. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339-348. DOI: 10.15898/j.cnki.11-2131/td.2016.04.002
Yu-miao MENG, Rui-zhong HU, Jian-feng GAO, Xian-wu BI, Xiao-wen HUANG. Research Progress on Sb Geochemistry and Sb Isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339-348. DOI: 10.15898/j.cnki.11-2131/td.2016.04.002
Citation: Yu-miao MENG, Rui-zhong HU, Jian-feng GAO, Xian-wu BI, Xiao-wen HUANG. Research Progress on Sb Geochemistry and Sb Isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339-348. DOI: 10.15898/j.cnki.11-2131/td.2016.04.002

锑的地球化学行为以及锑同位素研究进展

Research Progress on Sb Geochemistry and Sb Isotopes

  • 摘要: 锑被广泛用于生产各种阻燃剂、玻璃、橡胶、颜料、陶瓷、半导体原件等。锑在火成岩中属于分散元素,但可以富集在沉积岩中(如深海黏土、页岩及碎屑岩)。锑常出现在与辉长质深成岩有关的岩浆硫化物矿床、与花岗岩有关的硫化物矿床、碎屑岩-碳酸岩赋矿的钨-锑-汞层控矿床及热液铅锌矿床中。目前高精度锑同位素的分析测试方法已基本成熟,即酸溶、阳离子树脂交换柱结合硫醇棉纤维法或阴阳离子交换柱法分离富集锑、氢化物发生器MC-ICP-MS测定锑同位素。仪器的质量歧视校正通常采用标样-样品匹配法、In内标法和Sn内标法。不同地质储库端元的锑同位素组成变化较大(达18‱),海水为~3.7‱,硅酸岩为0.9‱~2.9‱,硫化物(辉锑矿、闪锌矿、黄铁矿、白铁矿)为-1.9‱~16.9‱。且来自不同国家的辉锑矿具有不同的锑同位素组成,不同产地玻璃的锑同位素组成也不同。锑同位素在氧化还原过程(或硫化物沉淀)和无机吸附过程会发生明显分馏,分别达~9‱和~4‱。因此,锑同位素有可能作为一种灵敏的地球化学示踪剂,对示踪成矿物质来源、刻画与氧化还原等过程有关的成矿过程和探讨矿床形成机理、矿区重金属锑污染的治理以及考古等方面具有重要指示作用。

     

    Abstract: Antimony (Sb) has been widely used in products such as fire retardants, glass, rubber, paint, ceramics and semiconductors. It is found throughout igneous rocks but can be enriched in sedimentary rocks such as abysmal clays, shales and clastic rocks. Sb commonly occurs in magmatic sulfide deposits related to gabbroic rocks, sulfide deposits related to granitic rocks, clastic rocks and carbonate rocks hosted in stratified W-Sb-Hg deposits, and hydrothermal Pb-Zn deposits. The analytical method of high precision determination of Sb isotopes is now available. Samples are commonly digested with different types of acids, and Sb is separated and concentrated by cation exchange column combined with Thiol cotton fiber or both anion and cation exchange columns. Sb isotopes are determined by MC-ICP-MS coupled with hydride generation. The mass discrimination of equipment is commonly corrected by sample standard bracketing, using In and Sn internal standards. Different geological reservoirs have variable Sb isotope compositions (up to 18‱), with seawater of about 3.7‱, silicate rocks of 0.9‱ to 2.9‱, and sulfides (stibnite, sphalerite, pyrite, marcasite) of -1.9‱ to 16.9‱. Moreover, stibnites from different countries have different Sb isotope compositions. Glass from different places of production also shows different Sb isotope compositions. Sb isotopes will fractionate up to about 9‱ and 4‱ during oxide-reduction process (or sulfide precipitation) and inorganic absorption process, respectively. Therefore, Sb isotopes may serve as a geochemical tracer, which play an important role in indicating the source of ore-forming materials, portraying the ore-forming process and revealing the ore-forming mechanism. This isotope system can also be used to trace heavy metal pollution and can be used in archaeology.

     

/

返回文章
返回