中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

叶淑爱, 王伟, 普旭力, 蔡继杰. 熔融制样X射线荧光光谱法测定碳化钨及其废料中的钨[J]. 岩矿测试, 2015, 34(1): 99-103. DOI: 10.15898/j.cnki.11-2131/td.2015.01.013
引用本文: 叶淑爱, 王伟, 普旭力, 蔡继杰. 熔融制样X射线荧光光谱法测定碳化钨及其废料中的钨[J]. 岩矿测试, 2015, 34(1): 99-103. DOI: 10.15898/j.cnki.11-2131/td.2015.01.013
Shu-ai YE, Wei WANG, Xu-li PU, Ji-jie CAI. Determination of Tungsten Content in Tungsten Carbide and Waste Product by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2015, 34(1): 99-103. DOI: 10.15898/j.cnki.11-2131/td.2015.01.013
Citation: Shu-ai YE, Wei WANG, Xu-li PU, Ji-jie CAI. Determination of Tungsten Content in Tungsten Carbide and Waste Product by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2015, 34(1): 99-103. DOI: 10.15898/j.cnki.11-2131/td.2015.01.013

熔融制样X射线荧光光谱法测定碳化钨及其废料中的钨

Determination of Tungsten Content in Tungsten Carbide and Waste Product by X-ray Fluorescence Spectrometry with Fusion Sample Preparation

  • 摘要: 碳化钨被广泛应用于硬质合金生产材料, 其钨的含量关系碳化钨的性能及货物结算, 生产过程中因配比错误、打磨等原因还会产生大量的含钨废料, 从废料中回收钨能弥补钨资源的不足, 因此测定碳化钨及其废料中的钨具有重要意义.目前碳化钨中钨含量的测定通常参照国家标准采用辛可宁重量法, 准确度较高, 但只适用于检测三氧化钨含量大于50%的样品, 且过程繁琐, 工作量大.本文根据碳化钨在高温下易氧化的特点, 借鉴国际标准ASTM B890-07, 提出将碳化钨转化为三氧化钨, 采用熔融制样-X射线荧光光谱(XRF)测定钨含量的方法.即碳化钨先在马弗炉中灼烧至钨完全转化为三氧化钨, 再加入五氧化二钽作内标, 四硼酸钠-四硼酸锂为混合熔剂, 在1150℃下熔融制成试样片, 用XRF法测定钨的含量.结果表明, 最佳的灼烧温度为800℃, 在此温度下碳化钨完全转化成三氧化钨, 有效地解决了碳化钨熔融制样的难点; 方法精密度(RSD)为0.2%, 实际样品的测定值与国家标准方法(辛可宁重量法)一致, 可测量三氧化钨含量的范围为30%~100%, 且分析时间大大缩短, 可满足大量实际样品检测的需要.

     

    Abstract: Tungsten carbide is widely used in the production of cemented carbide materials and the content of tungsten in tungsten carbide has a significant impact on its performance and cargo accounts settlement. The ratio error and grinding in the production process produces generous tungsten-containing waste, and the recovery of tungsten from waste material can make up for the shortage of tungsten resources, so it is important to determine tungsten in tungsten carbide and its waste. At present, the determination of tungsten in tungsten carbide is usually estimated by the national standard and is analyzed by using the cinchonine gravimetric method. The method has high accuracy, but, only for the detection of tungsten trioxide content greater than 50% of the sample and the process is tedious and work intensive. According to the characteristics of tungsten carbide, such as easy oxidation at high temperature, reference to the international standard ASTM B890-07, it can be converted into tungsten trioxide, and the tungsten content can then be detected by melting the sample preparation for X-ray Fluorescence Spectrometry (XRF). To achieve this, the tungsten carbide was first placed in a muffle furnace to make convert the tungsten completely into tungsten trioxide, then tantalum pentoxide was added as the internal standard, with sodium borate-lithium tetraborate as mixed solvent, to a temperature of 1150℃ to make a sample piece, and then the tungsten was determined by XRF. Experiments show that the optimum temperature of ignition is 800℃, and at this temperature tungsten carbide is completely converted into tungsten trioxide, so the tungsten carbide fusion sample preparation, which is normally considered difficult is effectively solved; the precision of the method (RSD) is 0.2; the actual sample determination value is consistent with the national standard method (cinchonine gravimetric method); tungsten trioxide content range is 30%-100% through measure. The analysis time is greatly shortened and it meets the need of a large number of actual sample detection.

     

/

返回文章
返回