LA-MC-ICPMS分析古老熔体包裹体Pb同位素组成中的误差评价
张乐, 任钟元, 钱生平, 丁相礼, 吴亚东
doi: 10.15898/j.cnki.11-2131/td.2015.04.004
目前应用LA-MC-ICPMS分析熔体包裹体Pb同位素, 由于没有同时测试U和Th的信号, 导致熔体包裹体Pb同位素的研究仅局限于中生代以来的样品。本文应用LA-MC-ICPMS分析了玻璃样品以及存在显著U-Th衰变影响的古老熔体包裹体的Pb同位素组成, 评价了U/Pb和Th/Pb分析误差对初始Pb同位素比值校正的影响。实验中以国际玻璃标样NKT-1G为外部标样, 采用“标样-样品-标样法”进行仪器漂移和质量歧视校正, 结果表明, 国际玻璃标样BHVO-2G、TB-1G的208Pb/206Pb和207Pb/206Pb分析精度优于0.30%(2RSD), 与推荐值的偏差小于0.30%, 然而232Th/206Pb和238U/206Pb分析结果显示了较大分散性(外精度约5.0%)。根据误差传递计算, 样品的年龄对初始铅的误差有很大影响。对于古生代以来的样品(年龄小于540 Ma), 即使测试的232Th/206Pb和238U/206Pb与真值偏差达到10%, 经过U-Th衰变校正后的Pb同位素比值与真值的偏差依然小于0.80%。因此本方法可以将熔体包裹体等地质样品的Pb同位素研究由新生代样品(年龄小于65 Ma)扩展到古生代样品。
关键词: 激光剥蚀, 多接收器电感耦合等离子体质谱法, 熔体包裹体, 铅同位素, 误差评价
微钻取样-TIMS/MC-ICPMS和LA-MC-ICPMS分析矿物岩石87Sr/86Sr比值的技术比较
张乐, 任钟元, 丁相礼, 吴亚东, 赖永旺
微区Sr同位素体系相对于传统全岩Sr同位素研究,可以揭示样品自身存在的不均一性,更好地反映样品经历的地质过程,已被广泛应用于各种地质研究领域,如研究壳幔相互作用、岩浆起源和演化,岩浆体系开放性研究,沉积盆地物源示踪及气候环境研究。准确测定Rb-Sr同位素比值是应用该同位素体系的前提。微钻取样-热电离质谱/多接收电感耦合等离子体质谱(TIMS/MC-ICPMS)和激光剥蚀多接收电感耦合等离子体质谱(LA-MC-ICPMS)作为分析地质样品微区Sr同位素组成的有效手段,已经得到了较为广泛的应用。两种技术在样品制备、干扰校正和质谱测试等方面各具优势和不足。微钻取样-TIMS/MC-ICPMS的最大优势是可获得高精度的Sr同位素数据(外精度优于100×10-6,2SD);但由于需要进行化学处理,流程繁琐耗时(约10天),实验周期较长,同时需要严格控制化学流程空白,且取样直径(200~2000 μm)和取样深度(100~2000 μm)较大,空间分辨率较低,但是该方法可以对高Rb样品(如钾长石)进行有效分析。LA-MC-ICPMS的最大优势是样品制备简单,数小时即可完成,且分析效率高,根据样品Sr含量的大小激光束斑直径多在60~300 μm之间变化,其空间分辨率较前一种方法高,可在短时间内对大量样品进行分析。但由于不能进行化学分离,分析过程中存在多种干扰(如Rb、Ca、Kr和REEs等),影响了测试的精度(约200×10-6,2SD)和准确度(约150×10-6)。该方法目前只能对高Sr低Rb的样品(如斜长石、磷灰石等)进行有效分析,而对于干扰元素含量较高的样品目前无法应用。本文认为,对于微钻取样法,应将改进化学流程作为重点研究方向,提高化学处理效率,同时改善微钻取样法的取样技术,减小取样直径和深度以提高空间分辨率;对于激光剥蚀法,重点突破Kr、Rb和二价REEs等干扰校正问题,提高干扰元素含量较高的样品的分析精度和准确度,同时需要提高仪器灵敏度以满足低Sr含量样品的分析要求。
关键词: 锶同位素, 微区分析, 微钻, 热电离质谱/多接收电感耦合等离子体质谱, 激光剥蚀多接收电感耦合等离子体质谱

出版年份

相关作者

相关热词