【引用本文】 李阳, 邹灏, 刘行, 等. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用[J]. 岩矿测试, 2020, 39(2): 300-310. doi: 10.15898/j.cnki.11-2131/td.201812260141
LI Yang, ZOU Hao, LIU Hang, et al. Application of SILLS Software in Data Processing of Single Fluorite Fluid Inclusion LA-ICP-MS Trace Element Analysis[J]. Rock and Mineral Analysis, 2020, 39(2): 300-310. doi: 10.15898/j.cnki.11-2131/td.201812260141

SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用

1. 

成都理工大学地球科学学院, 四川 成都 610059

2. 

南京大学内生金属矿床成矿机制研究国家重点实验室, 江苏 南京 210046

3. 

构造成矿成藏自然资源部重点实验室, 四川 成都 610059

收稿日期: 2018-12-26  修回日期: 2019-03-09  接受日期: 2019-04-09

基金项目: 国家自然科学基金项目(41702108);内生金属矿床成矿机制研究国家重点实验室开放基金项目(2019-LAMD-K14);四川省教育厅科研项目(2018CZ0009)

作者简介: 李阳, 硕士研究生, 主要从事矿床学方面的研究工作。E-mail:liyangcdut@163.com

通信作者: 邹灏, 博士, 副教授, 主要从事矿物学、岩石学、矿床学等方面的教学与科研工作。E-mail:zouhao21@qq.com

Application of SILLS Software in Data Processing of Single Fluorite Fluid Inclusion LA-ICP-MS Trace Element Analysis

1. 

College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China

2. 

State Key Laboratory for Mineral Deposits Research, Nanjing University, Nanjing 210046, China

3. 

Key Laboratory of Mineralization and Accumulation, Ministry of National Resources, Chengdu 610059, China

Corresponding author: ZOU Hao, zouhao21@qq.com

Received Date: 2018-12-26
Revised Date: 2019-03-09
Accepted Date: 2019-04-09

摘要:近年来激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)应用于单个流体包裹体成分定量分析已成为研究流体包裹体的最佳手段之一。该实验过程和数据处理比较复杂,目前国内外采用的数据分析软件为一款基于MATLAB的SILLS软件,该软件主要是对矿物(锆石)、流体包裹体以及熔体包裹体LA-ICP-MS分析结果进行处理。本文以萤石流体包裹体LA-ICP-MS分析为例,阐述了样品制备与流体包裹体的优选方法,对流体包裹体片厚度以及单个流体包裹体的选取要求作了详细描述,对仪器参数设置、内外标样选取和剥蚀方法等进行了说明。基于SILLS软件采用尖峰消除的方法对待处理数据进行校正,对不同种类型的波峰进行峰宽的选取。在元素比值校正和等效盐度计算过程中,由于被测样品是萤石,Ca元素具有较高的背景值,选择以Na作为流体包裹体的内标元素,以Ca作为寄主矿物的内标元素对寄主矿物浓度进行计算,同时提出以电价平衡代替质量平衡进行等效盐度计算。以上方案提高了LA-ICP-MS分析单个萤石流体包裹体的准确性,有助于解释成矿流体来源和矿床成因等问题。

关键词: LA-ICP-MS, 单个流体包裹体, SILLS软件, 定量分析, 数据处理

要点

(1) 阐述了单个流体包裹体LA-ICP-MS分析过程中的常见问题。

(2) 对SILLS软件在使用过程中的常见问题进行分析,并提出合理的解决方法。

(3) 为提高单个流体包裹体LA-ICP-MS测试分析的准确性,对实验过程进行规范。

Application of SILLS Software in Data Processing of Single Fluorite Fluid Inclusion LA-ICP-MS Trace Element Analysis

ABSTRACT

BACKGROUND:

In recent years, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) for quantitative analysis of single fluid inclusion components has become one of the best methods for studying fluid inclusions. Due to the low success rate of this experiment, it is of great help to improve the experimental success rate by standardizing the whole experimental procedure and correctly processing the experimental data. At this stage, the data analysis software used at home and abroad is a SILLS software based on MATLAB, which deals with the LA-ICP-MS analysis results of mineral (zircon, etc.), fluid inclusions and melt inclusion.

OBJECTIVES:

To help researchers properly operate the entire experimental process, and to detail the use of the SILLS software for improved LA-ICP-MS analysis of single fluid inclusion.

METHODS:

The fluorite fluid inclusions were analyzed by LA-ICP-MS at the James Cook University, and the data was processed using the SILLS software. The actual operation of the experiment was performed to discuss common problems during the experiment.

RESULTS:

The fluorite fluid inclusion LA-ICP-MS analysis was taken as an example to standardize the sample preparation and selection before the experiment. The instrument parameters were set in the experiment, the internal and external standard samples were selected, and the Straight Ablation method was used instead of the Stepwise Ablation method. At the same time, based on the SILLS software, the peak elimination and how to choose a reasonable peak width in different situations were explained. In the element ratio correction and the equivalent salinity calculation, since the sample to be tested was fluorite, the Ca element had a higher background value. Therefore, the host mineral concentration was calculated by using Na as the internal standard element of the fluid inclusion and Ca as the internal standard element of the host mineral. At the same time, it was proposed to calculate the equivalent salinity by replacing the mass balance with the charge balance.

CONCLUSIONS:

The above scheme improves the accuracy of LA-ICP-MS analysis of individual fluorite fluid inclusions and helps to more accurately explain the source of ore-forming fluids and the genesis of the deposit.

KEY WORDS: LA-ICP-MS, single fluid inclusion, SILLS software, quantitative analysis, data treatment

HIGHLIGHTS

(1) The common problems in the analysis of single fluid inclusion LA-ICP-MS were described.

(2) The common problems in the use of SILLS software and propose reasonable solutions were discribed.

(3) The experimental process was standardized to improve the accuracy of the LA-ICP-MS test analysis of individual fluid inclusions.

本文参考文献

[1]

Audétat A, Günther D, Heinrich C A, et al. Formation of a magmatic-hydrothermal ore deposit:Insights with LA-ICP-MS analysis of fluid inclusions[J].Science, 1998, 279: 2091-2094. doi: 10.1126/science.279.5359.2091

[2]

Audétat A, Günther D, Heinrich C A, et al. Causes for large-scale metal zonation around mineralized plutins:Fluid inclusion LA-ICP-MS evidence from the Mole Granite[J].Australia Economic Geology, 2000, 95(8): 1563-1581. doi: 10.2113/gsecongeo.95.8.1563

[3]

Audétat A, Günther D, Heinrich C A, et al. Magmatic-hydrothermal evolution in a fractionating granite:A microchemical study of the Sn-W-F-mineralized Mole Granite (Austrilia)[J].Geochimica et Cosmochimica Acta, 2000, 64(19): 3373-3393. doi: 10.1016/S0016-7037(00)00428-2

[4]

Zou H, Fang Y, Zhang S T, et al. The source of Fengjia and Langxi barite-fluorite deposits in Southeastern Sichuan, China:Evidence from rare earth elements and S, Sr, and Sm-Nd isotopic data[J].Geological Journal, 2017, 52: 470-488. doi: 10.1002/gj.2779

[5]

Zou H, Zhang S T, Chen A Q, et al. Hydrothermal fluid sources of the Fengjia barite-fluorite deposit in Southeast Sichuan, China:Evidence from fluid inclusions and hydrogen and oxygen isotopes[J].Resource Geology, 2016, 66: 24-36. doi: 10.1111/rge.12084

[6]

Chicharro E, Boiron M C, López-García J Á, et al. Origin, ore forming fluid evolution and timing of the Logrosán Sn-(W) ore deposits (Central Iberian Zone, Spain)[J]. Ore Geology Reviews, 2016, 72(1): 896-913.

[7]

Seo J H, Guillong M, Aerts M, et al. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS[J]. Chemical Geology, 2011, 284(1-2): 35-44.

[8]

Zhe M, Hu J Z, Song Y, et al. Fluid inclusions and hydrogen, oxygen, and lead isotopes of the antuoling molybdenum deposit, Northern Taihang Mountains, China[J].Resource Geology, 2017, 67(4): 399-413. doi: 10.1111/rge.12135

[9]

Kang M, Yuan Y, Yue C C, et al. Fluid inclusion and isotope characteristics of the Xishanwanyangchang silver polymetallic deposit, Inner Mongolia, China[J].Geological Journal, 2018, 53: 303-318. doi: 10.1002/gj.3189

[10]

倪培, 范宏瑞, 丁俊英, 等. 流体包裹体研究进展[J]. 矿物岩石地球化学通报, 2014, 33(1): 1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001

Ni P, Fan H R, Ding J Y, et al. Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1): 1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001

[11]

孙小虹, 胡明月, 刘成林, 等. 激光剥蚀ICP-MS法测定盐类矿物单个流体包裹体的成分[J]. 分析化学, 2013, 41(2): 235-241.

Sun X H, Hu M Y, Liu C L, et al. Composition determination of single fluid inclusions in salt minerals by laser ablation ICP-MS[J]. Chinese Journal of Analytical Chemistry, 2013, 41(2): 235-241.

[12]

Mavrogenes J A, Bodnar R J, Anderson A J, et al. Assessment of the uncertainties and limitations of quantitative elemental analysis of individual fluid inclusions using synchrotron X-ray fluorescence (SXRF)[J].Geochimica et Cosmochimica Acta, 1995, 59(19): 3987-3995. doi: 10.1016/0016-7037(95)00261-W

[13]

Kurosawa M, Shimano S, Ishii S, et al. Quantitative trace element analysis of single fluid inclusions by proton-induced X-ray emission (PIXE):Application to fluid inclusions in hydrothermal quartz[J].Geochimica et Cosmochimica Acta, 2003, 67(22): 4337-4352. doi: 10.1016/S0016-7037(03)00378-8

[14]

王莉娟, 王玉往, 王京彬, 等. 内蒙古大井锡多金属矿床流体成矿作用研究:单个流体包裹体组分LA-ICP-MS分析证据[J]. 科学通报, 2006, 51(10): 1203-1210. doi: 10.3321/j.issn:0023-074X.2006.10.012

Wang L J, Wang Y W, Wang J B, et al. Study on fluid mineralization of Dajing tin polymetallic deposit in Iinner Mongolia:Evidence from LA-ICP-MS analysis of single fluid inclusion component[J].Chinese Science Bulletin, 2006, 51(10): 1203-1210. doi: 10.3321/j.issn:0023-074X.2006.10.012

[15]

卢焕章, 郭迪江. 流体包裹体研究的进展和方向[J]. 地质论评, 2000, 46(4): 385-392. doi: 10.3321/j.issn:0371-5736.2000.04.006

Lu H Z, Guo D J. Progress and trends of research on fluid inclusions[J].Geological Review, 2000, 46(4): 385-392. doi: 10.3321/j.issn:0371-5736.2000.04.006

[16]

Pettke T, Oberli F, Audétat A, et al. Recent develop-ments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J].Ore Geology Reviews, 2012, 44: 10-38. doi: 10.1016/j.oregeorev.2011.11.001

[17]

孙贺, 肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121. doi: 10.3321/j.issn:1001-8166.2009.10.005

Sun H, Xiao Y L. Fluid inclusions:Latest development, geological applications and prospect[J].Advances in Earth Science, 2009, 24(10): 1105-1121. doi: 10.3321/j.issn:1001-8166.2009.10.005

[18]

Longerich A P, Jackson S E, Canther D, et al. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J].Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899-904. doi: 10.1039/JA9961100899

[19]

Pettke T, Oberli F, Audétat A, et al. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J].Ore Geology Reviews, 2012, 44: 10-38. doi: 10.1016/j.oregeorev.2011.11.001

[20]

付乐兵, 魏俊浩, 张道涵, 等. 单个流体包裹体成分LA-ICPMS分析与矿床学应用进展[J]. 中南大学学报(自然科学版), 2015, 46(10): 3832-3840. doi: 10.11817/j.issn.1672-7207.2015.10.037

Fu L B, Wei J H, Zhang D H, et al. A review of LA-ICPMS analysis for individual fluid inclusions and its applications in ore deposits[J].Journal of Central South University (Science and Technology), 2015, 46(10): 3832-3840. doi: 10.11817/j.issn.1672-7207.2015.10.037

[21]

Tsui T F.Laser Microprobe Analysis of Fluid Inclusions in Quartz[D].Massachusetts: Harvard University, 1976: 1-156.

[22]

Tsui T F, Holland H D. Analysis of fluid inclusions by laser microprobe[J].Economic Geology, 1979, 74(7): 1647-1653. doi: 10.2113/gsecongeo.74.7.1647

[23]

Ulrich T, Günther D, Heinrich C A, et al. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J].Nature, 1999, 399(6737): 676-679. doi: 10.1038/21406

[24]

Heinrich C A, Günther D, Audétat A, et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions[J].Geology, 1999, 27(8): 755-758. doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2

[25]

Shepherd T J, Chenery S R. Laser ablation ICP-MS elemental analysis of individual fluid inclusions:An evaluation study[J].Geochimica et Cosmochimica Acta, 1995, 59(19): 3997-4007. doi: 10.1016/0016-7037(95)00294-A

[26]

Ghazi A M, McCandless T E, Vanko D A, et al. New quantitative approach in trace elemental analysis of single fluid inclusions:Applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Journal of Analytical Atomic Spectrometry, 1996, 11(9): 667-674. doi: 10.1039/ja9961100667

[27]

Moissette A, Shepherd T J, Chenery S R, et al. Calibration strategies for the elemental analysis of individual aqueous fluid inclusions by laser ablation inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 1996, 11(3): 177-185. doi: 10.1039/ja9961100177

[28]

Günther D, Audétat A, Frischknecht R, et al. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 1998, 13(4): 263-270. doi: 10.1039/A707372K

[29]

McCandless T E, Lajack D J, Ruiz J, et al. Trace element determination of single fluid inclusions in quartz by laser ablation ICP-MS[J].Geostandards Newsletter, 1997, 21(2): 279-287. doi: 10.1111/j.1751-908X.1997.tb00676.x

[30]

Shepherd T J, Ayora C, Cendón D I, et al. Quantitative solute analysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS:Complementary microbeam techniques[J].European Journal of Mineralogy, 1998, 10(6): 1097-1108. doi: 10.1127/ejm/10/6/1097

[31]

Loucks R R, Mavrogenes J A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions[J].Science, 1999, 284(5423): 2159-2163. doi: 10.1126/science.284.5423.2159

[32]

Schafer B, Frischknecht R, Günther D, et al. Determination of trace-element partitioning between fluid and melt using LA-ICP-MS analysis of synthetic fluid inclusions in glass[J].European Journal of Mineralogy, 1999, 11(3): 415-426. doi: 10.1127/ejm/11/3/0415

[33]

吴石头, 许春雪, KlausSimon, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451-459.

Wu S T, Xu C X, Klaus S, et al. Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459.

[34]

周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350-359.

Zhou L L, Wei J Q, Wang F, et al. Optimization of the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 2017, 36(4): 350-359.

[35]

周文喜, 王华建, 付勇, 等. 基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究[J]. 岩矿测试, 2017, 36(2): 97-106.

Zhou W X, Wang H J, Fu Y, et al. Study on the formation mechanism of phosphate nodules in the Early Cambrian period using LA-ICP-MS multi-element imaging technology[J]. Rock and Mineral Analysis, 2017, 36(2): 97-106.

[36]

王家松, 许雅雯, 彭丽娜, 等. 应用激光拉曼光谱研究锆石LA-ICP-MSU-Pb定年中的α通量基体效应[J]. 岩矿测试, 2016, 35(5): 458-467.

Wang J S, Xu Y W, Peng L N, et al. Laser-Raman spectroscopic study and LA-ICP-MS U-Pb dating of zircons from the Badaling granitic complex[J]. Rock and Mineral Analysis, 2016, 35(5): 458-467.

[37]

蓝廷广, 胡瑞忠, 范宏瑞, 等. 流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用[J]. 岩石学报, 2017, 33(10): 3239-3262.

Lan T G, Hu R Z, Fan H R, et al. In-situ analysis of major and trace elements in fluid inclusion and quartz:LA-ICP-MS method and applications to ore deposits[J]. Acta Petrologica Sinica, 2017, 33(10): 3239-3262.

[38]

Huang B, Yan Y, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J].Earth-Science Reviews, 2018, 186: 8-36. doi: 10.1016/j.earscirev.2018.02.004

[39]

Pettke T, Oberli F, Audétat A, et al. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J].Ore Geology Reviews, 2012, 44: 10-38. doi: 10.1016/j.oregeorev.2011.11.001

[40]

Iain M S, Anthony E W, Katherine M A, et al. Source of fluids forming distal Zn-Pb-Ag skarns:Evidence from laser ablation-inductively coupled plasma-mass spectrometry analysis of fluid inclusions from El Mochito, Honduras[J].Geology, 2008, 36(12): 947-950. doi: 10.1130/G25214A.1

[41]

Anthony E W, Iain M S, Katherine M A, et al. The genesis of distal zinc skarns:Evidence from the mochito deposit, Honduras[J].Economic Geology, 2010, 105(8): 1411-1440. doi: 10.2113/econgeo.105.8.1411

[42]

Shu Q H, Lai Y, Sun Y, et al. Ore genesis and hydrothermal evolution of the baiyinnuo'er zinc-lead skarn deposit, Northeast China:Evidence from isotopes (S, Pb) and fluid inclusions[J].Economic Geology, 2013, 108(4): 835-860. doi: 10.2113/econgeo.108.4.835

[43]

Tobias F, Thomas W, Markus W, et al. Fluid mixing forms basement-hosted Pb-Zn deposits:Insight from metal and halogen geochemistry of individual fluid inclusions[J].Geology, 2013, 41(6): 679-682. doi: 10.1130/G34092.1

[44]

Li W, Audetat A, Zhang J, et al. The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China:Evidence from LA-ICP-MS analysis of fluid inclusions[J].Ore Geology Reviews, 2015, 67: 264-278. doi: 10.1016/j.oregeorev.2014.12.003

[45]

Zhang Y, Shao Y, Wu C, et al. LA-ICP-MS trace element geochemistry of garnets:Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu-S-Fe-Au deposit, Eastern China[J].Ore Geology Reviews, 2017, 86: 426-439. doi: 10.1016/j.oregeorev.2017.03.005

[46]

Levresse G, Bouabdellah M, Gasquet D, et al. Basinal brines at the origin of the imiter Ag-Hg deposit (Anti-Atlas, Morocco):Evidence from LA-ICP-MS data on fluid inclusions, Halogen signatures, and stable isotopes (H, C, O)[J].Economic Geology, 2016, 112(5): 1753-1781.

[47]

Huang B, Yan Y, Piper J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J].Earth-Science Reviews, 2018, 186: 8-36. doi: 10.1016/j.earscirev.2018.02.004

[48]

Guillong M, Meier D L, Allan M M, et al.SILLS: A MATLAB-based Program for the Reduction of Laser Ablation ICP-MS Data of Homogeneous Materials and Inclusions[M]//Sylvester P.Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues.Quebec: Mineralogical Association of Canada, 2008: 328-333.

[49]

Longerich A P, Jackson S E, Canther D, et al. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J].Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899-904. doi: 10.1039/JA9961100899

[50]

Halter W E, Pettke T, Heinrich C A, et al. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS:Methods of quantification[J].Chemical Geology, 2002, 183: 63-86. doi: 10.1016/S0009-2541(01)00372-2

[51]

Allan M M, Yardley B, Forbes L J, et al. Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions[J]. American Mineralogist, 2005, 90(11/12): 1767-1775.

[52]

Luo Y, Gao S, Longerich H P, et al. The uncertainty budget of the multi-element analysis of glasses using LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2007, 22: 122-130. doi: 10.1039/B608010C

[53]

于倩.石盐中单个流体包裹体LA-ICP-MS测试方法研究[D].北京: 中国地质大学(北京), 2015.

Yu Q.Study on the Analysis Method of LA-ICP-MS for the Individual Fluid Inclusions Hosted in Halite[D].Beijing: China University of Geosciences (Beijing), 2015.

[54]

李晓春, 范宏瑞, 胡芳芳, 等. 单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用[J]. 矿床地质, 2010, 29(6): 1017-1028. doi: 10.3969/j.issn.0258-7106.2010.06.006

Li X C, Fan H R, Hu F F, et al. An analysis of the individual fluid inclusion by LA-ICP-MS and its application to ore deposits[J].Mineral Deposits, 2010, 29(6): 1017-1028. doi: 10.3969/j.issn.0258-7106.2010.06.006

[55]

Pettke T.Analytical Protocols for Element Concentration and Isotope Ratio Measurements in Fluid Inclusions by LA-(MC)-ICP-MS[M]//Sylvester P.Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues.Vancouver: Mineralogical Association of Canada, 2008: 189-218.

[56]

Guillong M, Hametner K, Reusser E, et al. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193nm, 213nm and 266nm wavelengths[J].Geostandards and Geoanalytical Research, 2005, 29(3): 315-331. doi: 10.1111/j.1751-908X.2005.tb00903.x

[57]

Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J].Geochimica et Cosmochimica Acta, 1993, 57: 683-684. doi: 10.1016/0016-7037(93)90378-A

[58]

Kendrick M A, Phillips D. New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br-Cl-I and 40Ar/39Ar age determinations[J].Geochimica et Cosmochimica Acta, 2009, 73(19): 5673-5692. doi: 10.1016/j.gca.2009.06.032

[59]

Kendrick M A. High precision Cl, Br and I determina-tions in mineral standards using the noble gas method[J].Chemical Geology, 2012, 292-293: 116-126. doi: 10.1016/j.chemgeo.2011.11.021

[60]

Hammerli J, Rusk B, Spandler C, et al. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS:A powerful tool to identify fluid sources[J].Chemical Geology, 2013, 337/338: 75-87. doi: 10.1016/j.chemgeo.2012.12.002

[61]

Stoffell B, Wilkinson J J, Jeffries T E M, et al. Transport and deposition in hydrothermal veins revealed by 213nm UV laser ablation microanalysis of single fluid inclusions[J].American Journal of Science, 2004, 304(6): 533-557. doi: 10.2475/ajs.304.6.533

[62]

Leisen M, Dubessy J, Boiron M, et al. Improvement of the determination of element concentrations in quartz-hosted fluid inclusions by LA-ICP-MS and Pitzer thermodynamic modeling of ice melting temperature[J].Geochimica et Cosmochimica Acta, 2012, 90: 110-125. doi: 10.1016/j.gca.2012.04.040

[63]

Pettke T, Oberli F, Heinrich C A, et al. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions[J]. Earth and Planetary Science Letters, 2010, 296(3/4): 267-277.

[64]

Grubbs F E. Procedures for detecting outlying observations in samples[J].Techno-Metrics, 1969, 11: 1-21. doi: 10.1080/00401706.1969.10490657

[65]

Frezzotti M L, Tecce F, Casagli A, et al. Raman spectroscopy for fluid inclusion analysis[J].Journal of Geochemical Exploration, 2012, 112: 1-20. doi: 10.1016/j.gexplo.2011.09.009

[66]

Guillong M, Latkoczy C, Seo J H, et al. Determination of sulfur in fluid inclusions by laser ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2008, 23(12): 1581-1589. doi: 10.1039/b807383j

[67]

Schlegel T U, Wälle M, Steele M M, et al. Accurate and precise quantification of major and trace element compositions of calcic-sodic fluid inclusions by combined microthermometry and LA-ICP-MS analysis[J].Chemical Geology, 2012, 334: 144-153. doi: 10.1016/j.chemgeo.2012.10.001

[68]

胡圣虹, 胡兆初, 刘勇胜, 等. 单个流体包裹体元素化学组成分析新技术——激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)[J]. 地学前缘, 2001, 8(4): 434-440. doi: 10.3321/j.issn:1005-2321.2001.04.026

Hu S H, Hu Z C, Liu Y S, et al. New techniques of major and minor elemental analysis in individual fluid inclusion-Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Earth Science Frontiers, 2001, 8(4): 434-440. doi: 10.3321/j.issn:1005-2321.2001.04.026

相似文献(共18条)

[1]

刘平, 杨军红. 数字化技术在铁基合金铬元素可见光谱分析中的应用. 岩矿测试, 2008, 27(1): 33-36.

[2]

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

[3]

王辉, 汪方跃, 关炳庭, 盛兆秋. 激光能量密度对LA-ICP-MS分析数据质量的影响研究. 岩矿测试, 2019, 38(6): 609-619. doi: 10.15898/j.cnki.11-2131/td.201903010029

[4]

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

[5]

宋浩威, 郭琳, 温宏利. 仪器分析输出数据的转换和处理软件. 岩矿测试, 2003, (1): 49-54.

[6]

刘玉龙, 张家祥, 刘宏清, 陈萍, 张治军, 廖复东. 仪器分析数据处理接口程序. 岩矿测试, 2006, 25(3): 291-293.

[7]

罗代洪. 标准物质数据处理及定值的MPDPS软件. 岩矿测试, 1991, (3): 226-231.

[8]

郭建卿, 周瑶琪, 刘超英, 陈勇. 人工合成碳酸盐岩流体包裹体实验与定量分析. 岩矿测试, 2004, (3): 161-167.

[9]

刘玉龙, 缪德仁, 王苏明. 气相色谱分析数据处理接口程序. 岩矿测试, 2008, 27(6): 467-469.

[10]

罗立强, 应志春. 国外XRFA中计算机软件和数据处理方法的研究. 岩矿测试, 1991, (2): 136-141.

[11]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[12]

杨载明. 用GGX-9型原子吸收辅助软件实现数据的快速处理. 岩矿测试, 2006, 25(2): 195-196.

[13]

靳梦琪, 李艳广, 王鹏, 汪双双, 黎卫亮. 榍石LA-ICP-MS U-Pb定年中元素分馏的影响及校正研究. 岩矿测试, 2020, 39(2): 274-284. doi: 10.15898/j.cnki.11-2131/td.201908120124

[14]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[15]

张伟盟, 严杰, 钟福军, 潘家永, 刘文泉, 赖静, 周堂波. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究. 岩矿测试, 2019, 38(4): 449-460. doi: 10.15898/j.cnki.11-2131/td.201901160007

[16]

何佳乐, 潘忠习, 冉敬. 激光拉曼光谱法在单个流体包裹体中的应用进展. 岩矿测试, 2015, 34(4): 383-391. doi: 10.15898/j.cnki.11-2131/td.2015.04.002

[17]

王彦斌, 张拴宏, 赵越, 宋彪. 锆石SHRIMP年龄测定数据处理时系统偏差的避免——标准锆石分段校正的必要性. 岩矿测试, 2006, 25(1): 9-14.

[18]

丁悌平, 张自超. 关于同位素地质测试数据的数据处理及结果表示. 岩矿测试, 2000, (1): 77-79.

计量
  • PDF下载量(14)
  • 文章访问量(220)
  • HTML全文浏览量(55)
  • 被引次数(0)
目录

Figures And Tables

SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用

李阳, 邹灏, 刘行, 蒋修未, 李蝶