【引用本文】 王冀艳, 胡家祯, 丁汉铎, 等. 金活动态提取剂提取-电感耦合等离子体质谱法测定深穿透地球化学样品中的金[J]. 岩矿测试, 2020, 39(4): 525-534. doi: 10.15898/j.cnki.11-2131/td.201909300142
WANG Ji-yan, HU Jia-zhen, DING Han-duo, et al. Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 525-534. doi: 10.15898/j.cnki.11-2131/td.201909300142

金活动态提取剂提取-电感耦合等离子体质谱法测定深穿透地球化学样品中的金

1. 

河南省岩石矿物测试中心, 河南 郑州 450012

2. 

自然资源部贵金属探测技术重点实验室, 河南 郑州 450012

3. 

中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000

4. 

自然资源部地球化学探测技术重点实验室, 河北 廊坊 065000

收稿日期: 2019-09-23  修回日期: 2020-01-30  接受日期: 2020-04-16

基金项目: 国家重点研发计划项目(2016YFC0600603)

作者简介: 王冀艳, 硕士, 高级工程师, 主要从事无机元素分析研究。E-mail:94396436@qq.com

通信作者: 姚文生, 博士, 教授级高级工程师, 主要从事深穿透地球化学方法技术研究及地球化学填图工作。E-mail:yaowensheng@igge.cn

Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction

1. 

Henan Province Rock and Mineral Testing Centre, Zhengzhou 450012, China

2. 

Key Laboratory of Precious Metals Analysis and Exploration Technology, Ministry of Land and Resources, Zhengzhou 450012, China

3. 

Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geologcial Sciences, Langfang 065000, China

4. 

Key Laboratory of Geochemical Exploration, Ministry of National Resources, Langfang 065000, China

Corresponding author: YAO Wen-sheng, yaowensheng@igge.cn

Received Date: 2019-09-23
Revised Date: 2020-01-30
Accepted Date: 2020-04-16

摘要:金的地球化学勘查基于金的准确测定,地球化学样品中金含量通常处于ng/g水平,需先进行分离富集,再采用电感耦合等离子体质谱法(ICP-MS)或石墨炉原子吸收光谱法(GFAAS)进行测定。当前,隐伏矿床勘查是地球化学探测技术的发展前沿,金活动态提取技术是寻找隐伏金矿的有效手段之一。相比于全量分析,金的活动态含量更低,需要解决选择性提取、高效预富集与准确测定等一系列难题。本文采用柠檬酸铵与土壤中黏土矿物及次生矿物作用促使吸附和可交换组分的金进入提取液,以硫脲和硫代硫酸钠络合金使活动态金向提取液中扩散,达到选择性提取的目的,建立了提取液中金的预富集及ICP-MS测定方法。实验确定的分析条件为:采用5g/L柠檬酸铵-2g/L硫脲-5g/L硫代硫酸钠为提取剂,提取时间24h,在酸性硫脲介质下用活性炭富集金,金吸附率可达89.6%~109.2%,灰化解吸温度为650~700℃。本方法检出限为0.05ng/g,相对标准偏差(RSD)为9.4%~10.2%,加标回收率为91.2%~93.4%。与已报道的硫酸铁-硫脲-硫代硫酸钠溶液提取再GFAAS测定的方法相比,本方法具有检出限低、测试线性范围宽、测试速度快的优势;应用于森林覆盖区黑龙江东安金矿区地球化学探测试验,金活动态异常与隐伏金矿位置一致。

关键词: 隐伏金矿, , 活动态提取, 硫脲, 活性炭吸附, 电感耦合等离子体质谱法

要点

(1)采用柠檬酸铵-硫脲-硫代硫酸钠专用提取剂提取土壤活动态金。

(2)发展了金活动态提取液硫脲介质下活性炭富集方法。

(3)金活动态提取、测定技术成功应用于森林沼泽景观区隐伏金矿探测试验。

Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction

ABSTRACT

BACKGROUND:

The geochemical exploration for gold deposits is based on the accurate determination of gold. The content of gold in geochemical samples is usually at the level of ng/g, which needs to be preconcentrated before determination by inductively coupled plasma-mass spectrometry (ICP-MS) or graphite furnace absorption spectroscopy (GFAAS). At present, the exploration of buried deposits is the frontier of geochemical exploration technology and the extraction of gold mobile fraction is one of the most effective approaches to find concealed gold deposits. Compared with whole rock gold analysis, the gold mobile fraction content is much lower, which requires specific leaching, efficient preconcentration and accurate determination.

OBJECTIVES:

To selectively extract gold mobile fraction and find surface secondary anomaly information for exploring concealed ore bodies.

METHODS:

Experiments were carried out on the extraction agent and determination of gold mobile fraction by ICP-MS. Ammonium citrate was used to promote the disassociation of the adsorption of exchangeable form gold from the surface of clay minerals and secondary minerals in the soil. The complexation of thiourea and sodium thiosulfate was applied to diffuse the extracted gold into the solution to achieve the purpose of selective extraction. The procedure for gold preconcentration from extraction solution and the ICP-MS determination method were established.

RESULTS:

The experiments determined that the extractant was composed of 5g/L ammonium citrate, 2g/L thiourea, and 5g/L sodium thiosulfate. The extraction time was 24h, and the active carbon was used to preconcentrate gold in the acidic thiourea medium. The gold adsorption rates were 89.6%-109.2%, and the ashing temperature of the concentration materials were 650-700℃. The detection limit of the method was 0.05ng/g, the relative standard deviations (RSDs) ranged from 9.4% to 10.2%, and the recoveries were from 91.2% to 93.4%.

CONCLUSIONS:

Compared with the published method, extraction with ferric sulfate-thiourea-sodium thiosulfate solution and determination by GFAAS, this method has the advantages of low detection limit, wide linear range and fast analysis. This method has been successfully applied in the geochemical exploration of gold deposits in the forest swamp landscape area of Dongan, Heilongjiang Province. Gold anomaly delineated is consistent with the location of the concealed gold deposit.

KEY WORDS: concealed gold deposit, gold, mobile fraction leaching, thiourea, activated carbon adsorption, inductively coupled plasma-mass spectrometry

Highlights

(1) The extraction of gold mobile fraction in soil with a special extractant of ammonium citrate-thiourea-sodium thiosulfate.

(2) The method using an active carbon preconcentration of gold mobile fraction in a thiourea medium was developed.

(3) The extraction and determination technology for gold mobile fraction was successfully applied to the detection test of hidden gold deposits in a forest swamp landscape area.

本文参考文献

[1]

郭林中, 韦瑞杰, 王海潮, 等. 改性活性炭的制备及其对金吸附性能的研究[J]. 岩矿测试, 2014, 33(4): 528-534.

Guo L Z, Wei R J, Wang H C, et al. Study on preparation and Au(Ⅲ) adsorption ability of nitric acid modified activated carbon[J]. Rock and Mineral Analysis, 2014, 33(4): 528-534.

[2]

马怡飞, 汪广恒, 张尼, 等. 乙醇介质制备载炭泡塑及其在地质样品金测定中的应用[J]. 岩矿测试, 2018, 37(5): 533-540.

Ma Y F, Wang G H, Zhang N, et al. Application of carbon-loaded polyurethane foam produced by ethanol media in determination of gold in geological samples[J]. Rock and Mineral Analysis, 2018, 37(5): 533-540.

[3]

张洁, 阳国运. 电感耦合等离子体质谱法测定金矿石中金[J]. 冶金分析, 2018, 38(11): 18-23.

Zhang J, Yang G Y. Determination of gold in gold ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(11): 18-23.

[4]

邢夏, 徐进力, 陈海杰, 等. 抗坏血酸为基体改进剂石墨炉原子吸收光谱法测定金矿区植物样品中的痕量金[J]. 岩矿测试, 2015, 34(3): 319-324.

Xing X, Xu J L, Chen H J, et al. Determination of trace gold in plant samples from a gold mining area by graphite furnace atomic absorption spectrometry with ascorbic acid as the matrix modifier[J]. Rock and Mineral Analysis, 2015, 34(3): 319-324.

[5]

Mann A W. Strong versus weak digestion:Ligand based soil extraction geochemistry[J].Geochemistry:Exploration, Environment, Analysis, 2010, 10(1): 17-26. doi: 10.1144/1467-7873/09-216

[6]

孟贵祥, 吕庆田, 严加永, 等. "穿透性"探测技术在覆盖区地质矿产调查中的应用研究[J]. 地球学报, 2019, 40(5): 637-650.

Meng G X, Lü Q T, Yan J Y, et al. The research and application of explorational technology of "penetrating" to geology and mineral investigation in overburden area[J]. Acta Geoscientica Sinica, 2019, 40(5): 637-650.

[7]

鲁美, 叶荣, 张必敏, 等. 覆盖区地球化学勘查进展[J]. 矿床地质, 2019, 38(6): 1408-1411.

Lu M, Ye R, Zhang B M, et al. The development of geochemical exploration in the covered area[J]. Mineral Deposits, 2019, 38(6): 1408-1411.

[8]

徐洋.覆盖区隐伏矿地球化学弱信息提取技术研究[D].北京: 中国地质大学(北京), 2015.

Xu Y.The geochemical methods to extract the weak geochemical signals from concealed deposits[D].Beijing: China University of Geosciences (Beijing), 2015.

[9]

徐善法, 刘汉彬, 王玮, 等. 深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J]. 物探与化探, 2017, 42(2): 189-193.

Xu S F, Liu H B, Wang W, et al. An experimental study of deep penetration geochemical technology in the Shihongtan uranium deposit[J]. Geophysical and Geochemical Exploration, 2017, 42(2): 189-193.

[10]

Xie X J, Lu Y X, Yao W S, et al. Further study on deep penetrating geochemistry over the spence porphyry copper deposit, Chile[J]. Earth Science Frontiers, 2011, 2(3): 303-311.

[11]

Wang X Q, Zhang B M, Lin X, et al. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J]. Ore Geology Reviews, 2016, 73(3): 417-431.

[12]

姚文生.元素活动态提取剂机理及实验条件研究[D].北京: 中国地质科学院, 2011: 24-36.

Yao W S. Leaching mechanism and conditions of extractants on mobile forms of elements in soils[D].Beijing: Chinese Academy of Geological Sciences, 2011: 24-36.

[13]

Williams T M, Gunn A G. Application of enzyme leach soil analysis for epithermal gold exploration in the Andes of Ecuador[J]. Applied Geochemistry, 2002, 17(4): 367-385.

[14]

叶信栋, 孙彬彬, 周国华, 等. 河北蔡家营铅锌多金属矿地电化学提取有效性及提取条件试验[J]. 地质与勘探, 2018, 54(5): 979-987.

Ye X D, Sun B B, Zhou G H, et al. Effectiveness and conditions tests of geo-electrochemical extraction in the Caijiaying Pb-Zn polymetallic mining area[J]. Geology and Exploration, 2018, 54(5): 979-987.

[15]

Lu M, Ye R, Wang Z K, et al. Geogas prospecting for buried deposits under loess overburden:Taking Shenjiayao gold deposit as an example[J].Journal of Geochemical Exploration, 2019, 197: 122-129. doi: 10.1016/j.gexplo.2018.11.015

[16]

Sadeghi M, Albanese S, Morris G, et al. REE concen-trations in agricultural soil in Sweden and Italy:Comparison of weak MMI® extraction with near total extraction data[J].Applied Geochemistry, 2015, 63: 22-36. doi: 10.1016/j.apgeochem.2015.07.004

[17]

Birrell R D, Fedikow M A, Mann A W, et al. Vertical ionic migration:Mechanisms, soil anomalies, and sampling depth for mineral exploration[J].Geochemistry:Exploration, Environment, Analysis, 2005, 5(3): 201-210. doi: 10.1144/1467-7873/03-045

[18]

王学求, 张必敏, 叶荣, 等. 纳米地球化学与覆盖区矿产勘查[J]. 矿物岩石地球化学通报, 2016, 35(1): 43-51.

Wang X Q, Zhang B M, Ye R, et al. Nanogeochemistry for mineral exploration through covers[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1): 43-51.

[19]

毛永新.黑龙江金厂金矿Ⅻ号矿体金活动态地球化学测量应用研究[D].长春: 吉林大学, 2014.

Mao Y X.Study on the application of MOMEO geochemical survey in Ⅻ ore body of Jinchang gold deposit, Heilongjiang Province[D].Changchun: Jilin University, 2014.

[20]

白金峰, 卢荫庥, 文雪琴, 等. 金的活动态分析方法及其应用[J]. 物探与化探, 2006, 30(5): 410-413.

Bai J F, Lu Y X, Wen X Q, et al. The analytical method for mobile forms of gold and its application[J]. Geophysical and Geochemical Exploration, 2006, 30(5): 410-413.

[21]

赵伟, 王玉林, 钟莅湘, 等. 土壤样品中贵金属活动态提取技术[J]. 岩矿测试, 2010, 29(3): 212-216.

Zhao W, Wang Y L, Zhong L X, et al. Exreaction and determination method for mobile forms of precious metals in soil samples[J]. Rock and Mineral Analysis, 2010, 29(3): 212-216.

[22]

徐进力, 邢夏, 张鹏鹏, 等. 元素活动态提取条件和分析方法的应用研究[J]. 地质学报, 2020, 94(3): 982-990.

Xu J L, Xing X, Zhang P P, et al. Application research on extraction conditions and analysis methods of active state elements[J]. Acta Geologica Sinica, 2020, 94(3): 982-990.

[23]

曹立峰, 王敏捷, 申硕果, 等. 活动态提取-电感耦合等离子体质谱法测定栾川矿集区深穿透地球化学样品中铜铅锌钨钼[J]. 岩矿测试, 2015, 34(4): 424-429.

Cao L F, Wang M J, Shen S G, et al. Determination of Cu, Pb, Zn, W and Mo in deep-penetrating geochemical samples of the Lunchan ore concentrated district by ICP-MS with extraction elements of mobile forms[J]. Rock and Mineral Analysis, 2015, 34(4): 424-429.

[24]

唐志中, 陈静, 孙自军, 等. 深穿透地球化学样品中金活动态提取条件研究[J]. 黄金, 2013, 34(6): 71-74.

Tang Z Z, Chen J, Sun Z J, et al. Leaching conditions for determination of mobile forms gold in deep-penetrating geochemical samples[J]. Gold, 2013, 34(6): 71-74.

[25]

连文莉, 来新泽, 刘军, 等. 黑色岩型铂族矿物中铂钯金相态ICP-MS分析方法研究[J]. 岩矿测试, 2017, 36(2): 120-129.

Lian W L, Lai X Z, Liu J, et al. Phase analysis method of Pt, Pd and Au in black rock-type platinum group element minerals by ICP-MS[J]. Rock and Mineral Analysis, 2017, 36(2): 120-129.

[26]

刘军, 闫红岭, 连文莉, 等. 封闭溶矿-电感耦合等离子体质谱法测定地质样品中金银铂钯[J]. 冶金分析, 2016, 36(7): 25-33.

Liu J, Yan H L, Lian W L, et al. Determination of gold, silver, platimun and palladium in geological samples by inductively coupled plasma mass spectrometry with sealed dissolution[J]. Metallurgical Analysis, 2016, 36(7): 25-33.

[27]

Chen S Z, Yan J T, Wang C L, et al. Preconcentration and determination of Au(Ⅲ), Pd(Ⅱ), and Pt(Ⅳ) using dispersive micro-solid phase extraction with multi-porous ZnFe2O4 nanotubes and ICP-MS[J].Atomic Spectroscopy, 2019, 40(6): 199-205. doi: 10.46770/AS.2019.06.001

[28]

Guo W, Xie W K, Jin L L, et al. Determination of sub-ng·g-1 Au in geological samples by ion molecule reaction ICP-MS and CH4 plasma modifier[J].RSC Advances, 2015, 5: 103189-103194. doi: 10.1039/C5RA19692B

[29]

何桂春, 吴艺鹏, 冯金妮, 等. 含金硫精矿焙烧除砷选铁-硫脲法提金试验研究[J]. 矿冶工程, 2012, 32(5): 62-66.

He G C, Wu Y P, Feng J N, et al. Experimental study on gold extraction from gold-bearing pyrite concentrate by roasting for arsenic removal and thiourea leaching of gold[J]. Mining and Metallurgical Engineering, 2012, 32(5): 62-66.

[30]

王学求, 叶荣. 纳米金属微粒发现——深穿透地球化学的微观证据[J]. 地球学报, 2011, 32(1): 7-12.

Wang X Q, Ye R. Findings of nanoscale metal particles:Evidence for deep-penetrating geochemsitry[J]. Acta Geoscientica Sinica, 2011, 32(1): 7-12.

[31]

张必敏, 王学求, 叶荣, 等. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨[J]. 桂林理工大学学报, 2019, 39(2): 301-310.

Zhang B M, Wang X Q, Ye R, et al. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies[J]. Journal of Guilin University of Technology, 2019, 39(2): 301-310.

[32]

耿艳, 梁斌, 徐志强, 等. 中性盐溶液提取土壤中金属活动态及其对隐伏矿的指示:以甲基卡稀有金属矿区为例[J]. 高校地质学报, 2019, 25(1): 51-57.

Geng Y, Liang B, Xu Z Q, et al. Neutral salt solution extraction of mobile forms of metals in soils and its indication of concealed orebody:A case study of the Jiajika rare metal deposits[J]. Geological Journal of China Universities, 2019, 25(1): 51-57.

[33]

许世伟, 王建英, 郑升, 等. 用硫脲从低品位尾矿中提取金的试验研究[J]. 湿法冶金, 2013, 32(2): 79-81.

Xu S W, Wang J Y, Zheng S, et al. Extraction of gold from low grade tailings using thiourea[J]. Hydrometallurgy of China, 2013, 32(2): 79-81.

[34]

韩彬, 童雄, 谢贤, 等. 硫代硫酸盐浸金体系研究进展[J]. 矿产综合利用, 2015, (3): 11-16.

Han B, Tong X, Xie X, et al. Progress of thosulfate system in gold leaching[J]. Multipurpose Utilization of Mineral Resources, 2015, (3): 11-16.

相似文献(共20条)

[1]

黄仁忠. 硫脲介质-石墨炉原子吸收光谱法测定化探样品中微量银. 岩矿测试, 2008, 27(3): 237-238.

[2]

汪永顺, 范广勤, 曹开科, 王文芳. 活性炭吸附-碘量法测定金矿石中金的不确定度评定. 岩矿测试, 2011, 30(3): 370-374.

[3]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[4]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[5]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[6]

曹立峰, 王敏捷, 申硕果, 闫红岭, 连文莉, 刘军. 活动态提取-电感耦合等离子体质谱法测定栾川矿集区深穿透地球化学样品中铜铅锌钨钼. 岩矿测试, 2015, 34(4): 424-429. doi: 10.15898/j.cnki.11-2131/td.2015.04.008

[7]

平锡康. 金湿法富集分离中硫脲洗脱液的分解. 岩矿测试, 1991, (4): 325-325290.

[8]

刘建, 闫英桃. 硫脲浸取—光度法测定硫化矿中金. 岩矿测试, 2000, (1): 74-.

[9]

王琳, 唐志中, 来新泽, 连文莉, 胡家祯, 周岚. 混合吸附剂分离富集-电感耦合等离子体质谱法测定地质样品中铂钯金. 岩矿测试, 2013, 32(3): 420-426.

[10]

李红, 曾扬, 郑浩, 马龙. 阴离子交换树脂-活性炭动态吸附无火焰原子吸收法测定矿石中的微量金铂钯. 岩矿测试, 2005, (4): 299-302.

[11]

王瑞敏. 泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铂钯. 岩矿测试, 2011, 30(3): 295-298.

[12]

陈景伟, 李玉明, 宋双喜, 宋江涛, 初琳. 载炭泡塑吸附-电感耦合等离子体发射光谱法测定金矿石的金量. 岩矿测试, 2015, 34(3): 314-318. doi: 10.15898/j.cnki.11-2131/td.2015.03.009

[13]

何金兰. 鱼腥藻对某些金属离子的吸附效应研究(Ⅱ):鱼腥藻对金(Ⅲ)的吸附. 岩矿测试, 1995, (3): 231-233.

[14]

唐莉, 李家熙. 藻吸附金属离子的研究—斜生栅藻富集金. 岩矿测试, 1994, (3): 161-168.

[15]

胡德新, 谷松海, 任海, 马德起, 杨丽飞, 苏明跃. D290树脂-活性炭吸附富集电感耦合等离子体质谱法测定铜精矿中铂钯. 岩矿测试, 2013, 32(4): 572-575.

[16]

郭林中, 韦瑞杰, 王海潮, 魏建录. 改性活性炭的制备及其对金吸附性能的研究. 岩矿测试, 2014, 33(4): 528-534.

[17]

, 甘树才, 段太成. DT—1016型阴离子交换树脂分离富集金铂钯. 岩矿测试, 2002, (2): 113-116.

[18]

代素芳, 郑浩. 在高氯酸—酒石酸—硫脲介质中原子吸收法测定多种矿石中的银. 岩矿测试, 2000, (4): 301-303.

[19]

李锡坤, 李展强, 张学华, 张汉萍, 李其英. 阴离子树脂-活性炭分离富集等离子体发射光谱法测定富钴锰结壳中的痕量金银铂钯. 岩矿测试, 2005, (2): 141-144.

[20]

赵素利, 张欣, 李曼, 温宏利, 屈文俊, 曹亚萍, 李超. 锍镍试金-电感耦合等离子体质谱法测定硫铁矿中铂族元素. 岩矿测试, 2011, 30(4): 412-415.

计量
  • PDF下载量(17)
  • 文章访问量(214)
  • HTML全文浏览量(39)
  • 被引次数(0)
目录

Figures And Tables

金活动态提取剂提取-电感耦合等离子体质谱法测定深穿透地球化学样品中的金

王冀艳, 胡家祯, 丁汉铎, 曹立峰, 张明炜, 张帆, 黄杰, 姚文生