【引用本文】 高娟琴, 于扬, 李以科, 等. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征[J]. 岩矿测试, 2021, 40(6): 871-882. doi: 10.15898/j.cnki.11-2131/td.202102210026
GAO Juan-qin, YU Yang, LI Yi-ke, et al. Distribution Characteristics of Rare Earth Elements and Heavy Metals in a Soil-Plant System at Bayan Obo Rare Earth Mine, Inner Mongolia[J]. Rock and Mineral Analysis, 2021, 40(6): 871-882. doi: 10.15898/j.cnki.11-2131/td.202102210026

内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征

1. 

中国地质大学(北京)地球科学与资源学院, 北京 100083

2. 

自然资源部成矿作用与资源评价国家重点实验室, 中国地质科学院矿产资源研究所, 北京 100037

3. 

中国中冶集团成都勘察研究总院有限公司, 四川 成都 610023

4. 

阿勒泰开源矿业有限责任公司, 新疆 阿勒泰 836599

收稿日期: 2021-02-21  修回日期: 2021-06-30  接受日期: 2021-07-28

基金项目: 国家重点研发计划项目"锂能源金属矿产基地深部探测技术示范"课题(2017YFC0602705);中国地质调查局地质调查项目"松潘-甘孜成锂带锂铍多金属大型锂矿资源基地综合调查评价"(DD20190173)

作者简介: 高娟琴, 博士研究生, 地球化学专业。E-mail: gaojuanqinmail@sina.com

通信作者: 于扬, 博士, 副研究员, 主要从事地球化学研究。E-mail: yuyang_cags@sina.com

Distribution Characteristics of Rare Earth Elements and Heavy Metals in a Soil-Plant System at Bayan Obo Rare Earth Mine, Inner Mongolia

1. 

School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

2. 

Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Natural Resources; Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

3. 

Chengdu Surveying Geotechnical Research Institute Co., LTD., Metallurgical Corporation of China, Chengdu 610023, China

4. 

Altay Kaiyuan Mining Co., LTD., Altay 836599, China

Corresponding author: YU Yang, yuyang_cags@sina.com

Received Date: 2021-02-21
Revised Date: 2021-06-30
Accepted Date: 2021-07-28

摘要:白云鄂博是世界最大的稀土矿山,研究白云鄂博矿区土壤及植物等环境介质中的稀土元素和重金属元素的分布特征,可以为调查矿区环境现状提供基础数据,同时为矿山环境修复提供参考依据。本文采集了白云鄂博稀土矿区的土壤、植物,以及背景区本巴台地区的岩石、土壤、牛粪五类样品,采用电感耦合等离子体质谱法(ICP-MS)测定了样品中15种稀土元素(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y)及8种重金属元素(Cr、Mn、Ni、Cu、Zn、Cd、Pb、As)的含量,研究这些元素地球化学行为及其在空间上的变化规律。结果表明:①矿区土壤和植物样品均显示出明显的轻稀土富集、重稀土亏损的特征。土壤和植物中含量最高的稀土元素均为Ce,分别达到49.95%及48.55%,与白云鄂博稀土矿富Ce的特征高度一致。②铁花植物的稀土元素总量在空间上呈现出主矿>东矿>东介勒格勒矿段的趋势,与三处矿体本身含矿性变化一致,说明该种植物稀土含量基本受矿体含矿性控制,对生长环境中稀土富集程度指示较准确。③矿区土壤中存在一定程度的Zn(465~778mg/kg)、Cd(1.35~2.23mg/kg)、Pb(181~431mg/kg)累积,其中部分点位Cd、Pb存在超出风险管制值的现象。综上,白云鄂博的矿石、土壤、植物样品均表现出富Ce的特征,且植物稀土含量与其所生长处的矿体含矿性强弱高度相关,三者之间稀土含量特征表现出明显继承性。此外,矿区局部点位土壤存在的Zn、Cd、Pb累积需要引起适当关注。

关键词: 白云鄂博, 土壤-植物, 电感耦合等离子体质谱法, 稀土元素, 重金属元素, 分布特征

要点

(1) 土壤和植物均富集轻稀土且Ce含量达49.95%及48.55%,与矿石富Ce的特征一致。

(2) 铁花中稀土总量空间变化规律与三处矿体含矿性强弱变化高度一致。

(3) 矿区土壤存在Zn、Cd、Pb累积,需加强对相应区域矿业活动的关注。

Distribution Characteristics of Rare Earth Elements and Heavy Metals in a Soil-Plant System at Bayan Obo Rare Earth Mine, Inner Mongolia

ABSTRACT

BACKGROUND:

Rare earth resources are essential for a wide range of advanced technologies, which have received considerable attention in the world. Bayan Obo is the largest rare earth mine in the world. The study on the distribution characteristics of rare earth elements (REEs) and heavy metal elements in the environmental media such as soil and plants in the Bayan Obo mining area can provide basic data for the investigation of the environmental status of the mining area and provide reference for its environmental restoration.

OBJECTIVES:

To investigate the distribution characteristics of REEs and heavy metal elements in various environmental media at different areas in the Bayan Obo mine.

METHODS:

Nine plant samples, six soil samples, one rock sample and one cow manure sample were collected from the Bayan Obo rare earth mine and surrounding areas. The contents of 15 rare earth elements and 8 heavy metal elements of these samples were determined by ICP-MS, which were used to study the behavior of elements and the variation rules in space.

RESULTS:

The results showed that the distribution patterns of REEs in rocks, soil, plants, and cow manure samples were similar: obvious enrichment of light-REEs and depletion of high-REEs. The richest rare earth element in soil and plant was Ce, reaching 49.95% and 48.55%, respectively. The spatial variation law of the total content of rare earth element in Limonium bicolor (Bag.) Kuntze was consistent with the mineralization change of the three ore bodies: the main ore>the east ore>Dongjielegele ore. This indicated that the rare earth content of this plant was basically controlled by the minerality of the ore body, and it was more accurate to indicate the enrichment degree of rare earth in the growth environment. In addition, there was accumulation of Zn (465-778mg/kg), Cd (1.35-2.23mg/kg), Pb (181-431mg/kg) in the soil of the mining area. Some points of Cd and Pb were beyond the risk control value.

CONCLUSIONS:

The ore, soil, and plant samples in Bayan Obo all show the characteristics of Ce enrichment. Moreover, the rare earth content of plants is highly correlated with the ore body where it grows. The REE content characteristics among the three media show obvious inheritance and consistency. Special attention should be paid to the mining and agricultural activities in the main mining area in Bayan Obo because of the accumulation of Zn, Cd, and Pb in these mining areas.

KEY WORDS: Bayan Obo, soil-plant, inductively coupled plasma-mass spectrometry, rare earth elements, heavy metal elements, distribution characteristics

HIGHLIGHTS

(1) Soil and plants were enriched in light rare earth elements (REEs). The Ce content of soil and plants reached 49.95% and 48.55%, respectively, which was consistent with the Ce rich characteristics of Bayan Obo ore.

(2) The spatial variation of REEs in Limonium bicolor (Bag.) Kuntze was highly consistent with the variation of mineralization degree of three ore bodies.

(3) The accumulation of Zn, Cd and Pb in the soil of the mining area was detected, thus it is necessary to pay more attention to the mining activities in the corresponding region.

本文参考文献

[1]

Khan A M, Yusoff I, Bakar N, et al. Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area[J].Environmental Science and Pollution Research, 2016, 23(24): 25039-25055. doi: 10.1007/s11356-016-7641-x

[2]

Phan Q V, Dao T T, Nguyen P, et al. An assessment of natural radioactivity in the Namxe rare earth deposit, Laichau Province, Vietnam[J].Minerals, 2019, 9(10): 602-614. doi: 10.3390/min9100602

[3]

Raju K K, Raju A N. Biogeochemical investigation in south eastern Andhra Pradesh: The distribution of rare earths, thorium and uranium in plants and soils[J].Environmental Geology, 2000, 39(10): 1102-1106. doi: 10.1007/s002540000111

[4]

Pepi S, Sansone L, Chicca M, et al. Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv."Glera"[J]. Environmental Monitoring and Assessment, 2016, 188(8): 1-9.

[5]

Khan A M, Yusoff I, Abubakar N K, et al. Accumulation, uptake and bioavailability of rare earth elements (REEs) in soil grown plants from ex-mining area in Perak, Malaysia[J].Applied Ecology and Environmental Research, 2017, 15(3): 117-133. doi: 10.15666/aeer/1503_117133

[6]

张立锋, 刘杰民, 张翼明, 等. 白云鄂博矿区土壤和植物中稀土元素的分布特征[J]. 岩矿测试, 2019, 38(5): 556-564.

Zhang L F, Liu J M, Zhang Y M, et al. Distribution characteristics of rare earth elements in plants and soils from the Bayan Obo mining area[J]. Rock and Mineral Analysis, 2019, 38(5): 556-564.

[7]

罗才贵, 罗仙平, 周娜娜, 等. 南方废弃稀土矿区生态失衡状况及其成因[J]. 中国矿业, 2014, 23(10): 65-70. doi: 10.3969/j.issn.1004-4051.2014.10.016

Luo C G, Luo X P, Zhou N N, et al. Status and causes of ecological imbalance of abandoned rare-earth mine in South China[J].China Mining Magazine, 2014, 23(10): 65-70. doi: 10.3969/j.issn.1004-4051.2014.10.016

[8]

张塞, 于扬, 王登红, 等. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价[J]. 岩矿测试, 2020, 39(5): 726-738.

Zhang S, Yu Y, Wang D H, et al. Forms distribution of heavy metals and their ecological risk evaluation in soils of ion adsorption type in the rare earth mining area of southern Jiangxi, China[J]. Rock and Mineral Analysis, 2020, 39(5): 726-738.

[9]

陈明, 郑小俊, 陶美霞, 等. 桃江流域河流沉积物中重金属污染特征与风险评价[J]. 环境化学, 2020, 39(10): 2784-2791. doi: 10.7524/j.issn.0254-6108.2019072902

Chen M, Zheng X J, Tao M X, et al. Pollution characteristics and risk assessment of heavy metals in sediment from Taojiang River Basin[J].Environmental Chemistry, 2020, 39(10): 2784-2791. doi: 10.7524/j.issn.0254-6108.2019072902

[10]

Pan Y, Li H. Investigating heavy metal pollution in mining brown-field and its policy implications: A case study of the Bayan Obo rare earth mine, Inner Mongolia, China[J].Environmental Management, 2016, 57(4): 879-893. doi: 10.1007/s00267-016-0658-6

[11]

王哲, 赵莹晨, 骆逸飞, 等. 内蒙古白云鄂博矿区土壤稀土元素污染特征及评价[J]. 环境科学, 2021, 42(3): 1503-1513.

Wang Z, Zhao Y C, Luo Y F, et al. Characteristics and evaluation of soil rare earth element pollution in the Bayan Obo mining region of Inner Mongolia[J]. Environmental Science, 2021, 42(3): 1503-1513.

[12]

陈耕. 白云鄂博主、东矿回顾性环境影响评价[D]. 呼和浩特: 内蒙古大学, 2012.

Chen G. Retrospective environmental impact assessment of Bayan Obo main and east mine[D]. Hohhot: Inner Mongolia University, 2012.

[13]

郭伟, 付瑞英, 赵仁鑫, 等. 内蒙古包头白云鄂博矿区及尾矿区周围土壤稀土污染现状和分布特征[J]. 环境科学, 2013, 34(5): 1895-1900.

Guo W, Fu R Y, Zhao R X, et al. Distribution characteristics and current situation of soil rare earth contamination in the Bayan Obo mining area and Baotou tailing reservoir in Inner Mongolia[J]. Environmental Science, 2013, 34(5): 1895-1900.

[14]

Ma Y H, Kuang L L, He X, et al. Effects of rare earth oxide nanoparticles on root elongation of plants[J].Chemosphere, 2010, 78(3): 273-279. doi: 10.1016/j.chemosphere.2009.10.050

[15]

Garcia A, Espinosa R, Delgado L, et al. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests[J].Desalination, 2011, 269(1-3): 136-141. doi: 10.1016/j.desal.2010.10.052

[16]

Wang L Q, Liang T. Accumulation and fractionation of rare earth elements in atmospheric particulates around a mine tailing in Baotou, China[J]. Atmospheric Environment, 2014, 23(6): 747-751.

[17]

Wei B G, Li Y H, Li H R, et al. Rare earth elements in human hair from a mining area of China[J].Ecotoxicology and Environmental Safety, 2013, 96: 118-123. doi: 10.1016/j.ecoenv.2013.05.031

[18]

梁青青, 阴海静, 郝金奇, 等. 白云鄂博矿区小学生尿中稀土元素镧铈钕水平的调查[J]. 环境与健康杂志, 2014, 31(11): 1003-1004.

Liang Q Q, Yin H J, Hao J Q, et al. Investigation of rare earth elements lanthanum, cerium and neodymium level in urine of pupils from Bayan Obo mining area[J]. Journal of Environment and Health, 2014, 31(11): 1003-1004.

[19]

Hao Z, Li Y, Li H, et al. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: A pilot study[J].Chemosphere, 2015, 128: 161-170. doi: 10.1016/j.chemosphere.2015.01.057

[20]

Gafur N A, Sakakibara M, Sano S, et al. A case study of heavy metal pollution in water of Bone River by artisanal small-scale gold mine activities in eastern part of Gorontalo, Indonesia[J].Water, 2018, . doi: 10.3390/w10111507

[21]

王爱云, 李以科, 李瑞萍, 等. 内蒙古白云鄂博稀土资源开发利用生态环境影响成本分析[J]. 地球学报, 2017, 38(1): 94-100.

Wang A Y, Li Y K, Li R P, et al. Environmental cost analysis of the development and utilization of the Bayan Obo rare earth resources, Inner Mongolia[J]. Acta Geoscientica Sinica, 2017, 38(1): 94-100.

[22]

高志强, 周启星. 稀土矿露天开采过程的污染及对资源和生态环境的影响[J]. 生态学杂志, 2011, 30(12): 2915-2922.

Gao Z Q, Zhou Q X. Contamination from rare earth ore strip mining and its impacts on resources and eco-environment[J]. Chinese Journal of Ecology, 2011, 30(12): 2915-2922.

[23]

王国珍. 对稀土冶炼"三废"及放射性污染治理的建议[J]. 四川稀土, 2007, (3): 2-5.

Wang G Z. Suggestions on "three types of wastes" of rare earth smelting and radioactive pollution control[J].Sichuan Rare Earth, 2007, (3): 2-5.

[24]

关海波, 李金霞, 牟艳军, 等. 白云鄂博矿区外围土壤稀土元素累积空间分异[J/OL]. 稀土, 2021. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210041.

Guan H B, Li J X, Mu Y J, et al. Spatial heterogeneity of rare earth elements accumulation in the soil surrounding Bayan Obo mining area[J/OL]. Chinese Rare Earths, 2021. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210041.

[25]

王哲, 周铜, 赵莹晨, 等. 内蒙古白云鄂博矿区优势植物重金属和稀土元素富集特征[J/OL]. 中国稀土学报: 1-13[2021-07-04]. http://kns.cnki.net/kcms/detail/11.2365.TG.20210615.1007.002.html.

Wang Z, Zhou T, Zhao Y C, et al. Enrichment characteristics of heavy metals and rare earth elements in dominant plants in Bayan Obo mining area of Inner Mongolia[J/OL]. Journal of the Chinese Society of Rare Earths: 1-13[2021-07-04]. http://kns.cnki.net/kcms/detail/11.2365.TG.20210615.1007.002.html.

[26]

杨占峰, 柳建勇. 白云鄂博稀土矿床探矿的必要性与可行性探讨[J]. 稀土, 2007, 28(6): 84-87. doi: 10.3969/j.issn.1004-0277.2007.06.020

Yang Z F, Liu J Y. Necessity and feasibility of Baiyunebo rare earth deposit prospecting[J].Chinese Rare Earths, 2007, 28(6): 84-87. doi: 10.3969/j.issn.1004-0277.2007.06.020

[27]

柳建勇, 苏胜旺, 张台荣, 等. 白云鄂博矿床东矿段深部及白云向斜核部探矿的可行性探讨[J]. 地质论评, 2006, 52(6): 821-825. doi: 10.3321/j.issn:0371-5736.2006.06.015

Liu J Y, Su S W, Zhang T R, et al. A discussion on the practicability of prospecting in the deep part of the east mine and kernel part of the Bayan syncline, Bayan Obo ore field[J].Geological Review, 2006, 52(6): 821-825. doi: 10.3321/j.issn:0371-5736.2006.06.015

[28]

程建忠, 侯运炳, 车丽萍, 等. 白云鄂博矿床稀土资源的合理开发及综合利用[J]. 稀土, 2007, 28(1): 70-74. doi: 10.3969/j.issn.1004-0277.2007.01.019

Cheng J Z, Hou Y B, Che L P, et al. Making rational multipurpose use of resources of REE in Baiyunebo deposit[J].Chinese Rare Earths, 2007, 28(1): 70-74. doi: 10.3969/j.issn.1004-0277.2007.01.019

[29]

程建忠, 车丽萍. 中国稀土资源开采现状及发展趋势[J]. 稀土, 2010, 31(2): 65-69, 85. doi: 10.3969/j.issn.1004-0277.2010.02.015

Cheng J Z, Che L P. Current mining situation and potential development of rare earth in China[J].Chinese Rare Earths, 2010, 31(2): 65-69, 85. doi: 10.3969/j.issn.1004-0277.2010.02.015

[30]

柯昌辉, 孙盛, 赵永岗, 等. 内蒙古白云鄂博超大型REE-Nb-Fe矿床控矿构造特征及深部找矿方向[J]. 地质通报, 2021, 40(1): 95-109.

Ke C H, Sun S, Zhao Y G, et al. Ore-controlling structure and deep prospecting of the Bayan Obo large-sized REE-Nb-Fe ore deposit Inner Mongolia[J].Geological Bulletin of China, 2021, 40(1): 95-109.

[31]

李强, 杨占峰. 白云鄂博主矿各矿石类型稀土配分特征研究[J/OL]. 稀土: 1-9[2021-07-04]. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210042.

Li Q, Yang Z F. Study on REE distribution characteristics of different ore types in Baiyunobo main orebody[J/OL]. Chinese Rare Earths: 1-9[2021-07-04]. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210042.

[32]

金海龙, 候少春, 魏威, 等. 白云鄂博东矿体深部不同类型矿石的地球化学特征研究[J/OL]. 稀土: 1-9[2021-07-04]. https://doi.org/10.16533/J.CNKI.15-1099/TF.20210033.

Jin H L, Hou S C, Wei W, et al. Geochemistry characteristics of various types of ores at depth of east orebody in Bayan Obo[J]. Chinese Rare Earths: 1-9[2021-07-04] https://doi.org/10.16533/J.CNKI.15-1099/TF.20210033.

[33]

苗莉, 徐瑞松, 徐金鸿, 等. 粤西地区土壤-植物系统中稀土元素地球化学特征[J]. 土壤学报, 2007, 44(1): 54-62. doi: 10.3321/j.issn:0564-3929.2007.01.009

Miao L, Xu R S, Xu J H, et al. Geochemical characteristics of rare earth elements (REEs) in the soil-plant system in west Guangdong Province[J].Acta Pedologica Sinica, 2007, 44(1): 54-62. doi: 10.3321/j.issn:0564-3929.2007.01.009

[34]

汪振立, 魏正贵, 陶冶, 等. 岩石-土壤-铁芒萁系统中稀土元素的分布、迁移和累积[J]. 地质通报, 2002, 21(12): 881-889. doi: 10.3969/j.issn.1671-2552.2002.12.012

Wang Z L, Wei Z G, Tao Y, et al. Distribution, migration and accumulation of rare earth elements (REE) in the rock-soil-dicranopteris dichotoma (R-S-D) system[J].Geological Bulletin of China, 2002, 21(12): 881-889. doi: 10.3969/j.issn.1671-2552.2002.12.012

[35]

张臻悦, 何正艳, 徐志高, 等. 中国稀土矿稀土配分特征[J]. 稀土, 2016, 37(1): 121-127.

Zhang Z Y, He Z Y, Xu Z G, et al. Rare earth partitioning characteristics of China rare earth ore[J]. Chinese Rare Earths, 2016, 37(1): 121-127.

相似文献(共20条)

[1]

刘明华, 杨晓波, 佟成冶, 马力, 乌爱军. 辽宁省浑河流域底质中重金属元素地球化学特征. 岩矿测试, 2008, 27(3): 184-188.

[2]

张立锋, 刘杰民, 张翼明. 白云鄂博矿区土壤和植物中稀土元素的分布特征. 岩矿测试, 2019, 38(5): 556-564. doi: 10.15898/j.cnki.11-2131/td.201809200107

[3]

7, 于成广, 王丹阳, 杨晓波, 马力, 乌爱军. 辽河流域人发中重金属元素分布特征. 岩矿测试, 2007, 26(4): 305-308.

[4]

鲁照玲, 胡红云, 姚洪. 土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究. 岩矿测试, 2012, 31(2): 241-246.

[5]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[6]

钱贞兵, 孙立剑, 徐升, 陈超, 戴晓峰. 淮河流域安徽段土壤重金属元素分布特征研究. 岩矿测试, 2018, 37(2): 193-200. doi: 10.15898/j.cnki.11-2131/td.201710190168

[7]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[8]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[9]

范晨子, 詹秀春, 曾普胜, 胡明月. 白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究. 岩矿测试, 2015, 34(6): 609-616. doi: 10.15898/j.cnki.11-2131/td.2015.06.002

[10]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[11]

王存龙, 郑伟军, 王红晋, 曾宪东, 季顺乐. 山东烟台环境介质中重金属元素富集特征及与酸化土壤的关系. 岩矿测试, 2012, 31(2): 361-369.

[12]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

[13]

应立娟, 林彬, 王立强, 李超, 王阔. 应用电感耦合等离子体质谱法研究西藏甲玛超大型铜多金属矿床辉钼矿稀土元素和微量元素地球化学特征. 岩矿测试, 2015, 34(3): 366-374. doi: 10.15898/j.cnki.11-2131/td.2015.03.018

[14]

刘久臣, 刘晓端, 徐 清, 汤奇峰. 上海崇明岛表层土壤重金属元素分布特征与环境地球化学基线值研究. 岩矿测试, 2010, 29(3): 245-249.

[15]

黄晓纯, 刘昌弘, 张军, 董泳秀, 刘文华, 赵秋香, 李锡坤. ICP-MS测定蔬菜样品中重金属元素的两种微波消解前处理方法. 岩矿测试, 2013, 32(3): 415-419.

[16]

门倩妮, 沈平, 甘黎明, 冯博鑫. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

[17]

李志伟, 邰自安, 任文岩, 高志军, 李艳华. 微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素. 岩矿测试, 2010, 29(3): 259-262.

[18]

陈贺海, 荣德福, 付冉冉, 余清, 廖海平, 任春生, 鲍惠君. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素. 岩矿测试, 2013, 32(5): 702-708.

[19]

张楠, 徐铁民, 吴良英, 魏双, 方蓬达, 王家松. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素. 岩矿测试, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023

[20]

黎卫亮, 程秀花, 李忠煜, 王鹏. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素. 岩矿测试, 2017, 36(5): 468-473. doi: 10.15898/j.cnki.11-2131/td.201607130099

计量
  • PDF下载量(7)
  • 文章访问量(447)
  • HTML全文浏览量(176)
  • 被引次数(0)
目录

Figures And Tables

内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征

高娟琴, 于扬, 李以科, 李瑞萍, 柯昌辉, 王登红, 于沨, 张塞, 王雪磊