【引用本文】 李瑞亮, 金正耀, 陈彪, 等. 铅同位素比值法研究辽宁东大杖子战国墓地出土铜器的矿料来源[J]. 岩矿测试, 2018, 37(6): 618-625. doi: 10.15898/j.cnki.11-2131/td.201803220027
LI Rui-liang, JIN Zheng-yao, CHEN Biao, et al. Lead Isotope Study on the Source of Copper Material for Bronze Vessels in Dongdazhangzi Warring States Period Cemetery, Liaoning Province[J]. Rock and Mineral Analysis, 2018, 37(6): 618-625. doi: 10.15898/j.cnki.11-2131/td.201803220027



安徽博物院文物科技保护中心, 安徽 合肥 230061


中国科学技术大学科技考古实验室, 安徽 合肥 230026


南京博物院文物保护研究所, 江苏 南京 210016


辽宁省文物考古研究所第二考古研究部, 辽宁 沈阳 110003


合肥市师范学院化学与化学工程学院, 安徽 合肥 230009

收稿日期: 2018-03-22  修回日期: 2018-05-24  接受日期: 2018-06-11

基金项目: 国家社会科学基金项目(15BKG008)

作者简介: 李瑞亮, 硕士, 从事科技考古与金属文物保护工作。E-mail:ablrl@qq.com

通信作者: 李娜, 副教授, 从事材料制备与表征工作。E-mail:sdjnlina@163.com

Lead Isotope Study on the Source of Copper Material for Bronze Vessels in Dongdazhangzi Warring States Period Cemetery, Liaoning Province


Cultural Conservation Center, Anhui Museum, Hefei 230061, China


Archaeometry Laboratory, University of Science and Technology of China, Hefei 230026, China


Institute of Cultural Heritage Conservation, Nanjing Museum, Nanjing 210016, China


The Second Department of Archaeological Research, Liaoning Provincial Institute of Cultural Relics and Arch-aeology, Shenyang 110003, China


Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230009, China

Corresponding author: LI Na, sdjnlina@163.com

Received Date: 2018-03-22
Revised Date: 2018-05-24
Accepted Date: 2018-06-11


关键词: 青铜器, 合金技术, 矿料来源, 青城子铅锌矿, 电感耦合等离子体发射光谱仪, 扫描电镜-能谱仪, 表面电离型固体质谱仪


(1) 采用ICP-OES和SEM-EDS测定东大杖子战国墓地出土7件青铜样品的成分。

(2) 采用TIMS测定了东大杖子战国墓地出土青铜器的铅同位素比值。

(3) 东大杖子战国墓地部分青铜器的铅料来自辽宁青城子铅锌矿的可能性极大,为研究战国时期辽东半岛金属资源的开发与流通提供了科学的证据。

Lead Isotope Study on the Source of Copper Material for Bronze Vessels in Dongdazhangzi Warring States Period Cemetery, Liaoning Province



As a high-grade cemetery in Liaoning Province and Northeastern Asia in the Warring States Period, Dongdazhangzi cemetery has received a lot of attention since it was excavated. Previous studies mainly focus on the structure of the tombs, the typology of burial objects, and the cultural properties. The provenance studies for bronze objects are lacking.


To discuss the provenance of bronzes in the Dongdazhangzi cemetery.


ICP-OES, SEM-EDS and TIMS have been used to analyze the chemical and lead isotopic compositions of 7 bronze samples from tomb No.03JDM4.


Chemical analysis revealed that there are 4 lead-tin bronzes and 2 tin bronzes out of all 7 samples, but the alloy type of the rest is yet unknown. The function of the objects is basically matched with the properties of the alloy. Lead isotope analysis indicated that the copper is unlikely to come from copper mines such as Inner Mongolia Linxi Dajing, Liaoning Hongtoushan and Shanxi Zhongtiaoshan. The lead isotope ratios of 5 samples, which contain lead exceeding 2%, range from 17.685 to 17.941 for 206Pb/204Pb, 15.530 to 15.612 for 207Pb/204Pb, 38.080 to 38.404 for 208Pb/204Pb. The lead sources are likely from the Qingchengzi lead-zinc deposit in Liaoning Province.


This study contributes to the provenance study of bonzes in Dongdazhangzi Warring States cemetery in Liaoning Province. At the same time, scientific evidence for the research of the trade and circulation of metal sources between Western Liaoning and Liaodong Peninsula during the Warring States Period is provided, as well as the exploitation history of the metal resources of Liaodong Peninsula.

KEY WORDS: bronze ware, alloy technology, mineral provenance, Qingchengzi lead-zinc deposit, Inductively Coupled Plasma-Optical Emission Spectrometer, Scanning Electron Microscopy-Energy Disperse Spectrometer, Surface Ionization Solid Mass Spectrometer


(1) The element compositions of 7 bronze samples from the Dongdazhangzi cemetery were determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and Scanning Electron Microscopy-Energy Disperse Spectrometry (SEM-EDS).

(2) The lead isotope ratios of the 7 bronze samples from the Dongdazhangzi cemetery were determined by Thermal Ionization Mass Spectrometry (TIMS).

(3) Parts of the lead resources used in bronze from the Dongdazhangzi cemetery most likely come from the Qingchengzi lead-zinc deposit in Liaoning Province. This conclusion provides scientific evidence for the research of exploitation and circulation of metal resources in the Liaodong Peninsula during the Warring States Period.



Frederik W R, Thilo R, Ernst P, et al. Copper for thepharaoh:Identifying multiple metal sources for Ramesses'workshops from bronze and crucible remains[J].Journal of Archaeological Science, 2017, 80: 50-73. doi: 10.1016/j.jas.2017.01.017


Farquhar R M, Hancock R G V, Pavlish L A, et al. Lead isotope ratios in 16th century copperware traded to North America:The Swedish connection[J].Canadian Journal of Physics, 2018, 96(6): 438-444.


Hsu Y K, Rawson J, Pollard A M, et al. Application of kernel density estimates to lead isotope compositions of bronzes from Ningxia, North-West China[J].Archaeometry, 2018, 60(1): 128-143. doi: 10.1111/arcm.v60.1


Ling J, Hjarthner-Holdar E, Grandin L, et al. Moving metals or indigenous mining? Provenancing Scandinavian bronze age artefacts by lead isotopes and trace elements[J].Journal of Archaeological Science, 2013, 40(1): 291-304. doi: 10.1016/j.jas.2012.05.040


Han W R, Kim S J, Han M S, et al. Manufacturing technique and provenance analysis of bronze artefacts excavated from Pungnap earthen fortress[J].Korean Journal of Cultural Heritage Studies, 2015, 48(2): 110-119.


Zhangsun Y Z, Liu R L, Jin Z Y, et al. Lead isotope analyses revealed the key role of Chang'an in the mirror production and distribution network during the Han Dynasty[J].Archaeometry, 2017, 59(4): 685-713. doi: 10.1111/arcm.12274


贾腊江, 姚远, 赵丛苍, 等. 秦早期青铜器中铅料矿源分析[J]. 自然科学史研究, 2015, 34(1): 97-104. doi: 10.3969/j.issn.1000-0224.2015.01.008

Jia L J, Yao Y, Zhao C C, et al. Mineral sources of lead aggregate about Early Qin bronze wares[J].Studies in the History of Natural Sciences, 2015, 34(1): 97-104. doi: 10.3969/j.issn.1000-0224.2015.01.008


张依依.东大杖子墓地研究[D].沈阳: 辽宁大学, 2016.

Zhang Y Y.Research on Dongdazhangzi Cemetery[D]. Shenyang: Liaoning University, 2016.


华玉冰, 孙建军. 辽宁建昌东大杖子墓地燕与土著文化的交流[J]. 大众考古, 2016, (10): 28-32.

Hua Y B, Sun J J. Yan exchanges with indigenous cultures in Dongdazhangzi cemetery of Liaoning Province[J]. Popular Archaeology, 2016, (10): 28-32.


赵鹏.辽宁建昌东大杖子墓地研究[D].大连: 辽宁师范大学, 2017.

Zhao P.The Study on the Dongdazhangzi Cemetery in Jianchang, Liaoning Province[D]. Dalian: Liaoning Normal University, 2017.


夏辉, 王小强, 杜天军, 等. 五酸和硝酸微波消解法结合ICP-OES技术测定多金属矿中多种元素的对比研究[J]. 岩矿测试, 2015, 34(3): 297-301.

Xia H, Wang X Q, Du T J, et al. Determination of multi-elements in polymetallic ores by ICP-OES with mixed acids and nitric acid microwave digestion[J]. Rock and Mineral Analysis, 2015, 34(3): 297-301.


孙淑云, 潜伟.古代铜、砷铜和青铜的使用与机械性能综述[C].第二届中日机械技术史国际学术会议论文集, 2000: 237-245.

Sun S Y, Qian W.A Review on Early Use and Mechanical Properties of Copper, Arsenic Copper and Bronze[C]. Proceedings of the Second China-Japan International Conference on History of Mechanical Technology, 2000: 237-245.


应立娟, 王阔, 王开建, 等. 西藏驱龙-甲玛-邦铺铜矿集区铅同位素地球化学示踪研究[J]. 岩矿测试, 2016, 35(3): 320-328.

Ying L J, Wang K, Wang K J, et al. Lead isotope geochemistry in the Qulong-Jiama-Bangpu ore concentrated area of Tibet[J]. Rock and Mineral Analysis, 2016, 35(3): 320-328.


金正耀. 铅同位素示踪方法应用于考古研究的进展[J]. 地球学报, 2003, 24(6): 548-551. doi: 10.3321/j.issn:1006-3021.2003.06.012

Jin Z Y. Achievements in applying Pb-isotope analysis to ancient Chinese bronzes[J].Acta Geoscientica Sinica, 2003, 24(6): 548-551. doi: 10.3321/j.issn:1006-3021.2003.06.012


陈铁梅. 科技考古学[M] . 北京: 北京大学出版社, 2008: 131

Chen T M. Archaeological Science[M] . Beijing: Beijing University Press, 2008: 131

李延祥, 王兆文, 王连伟, 等. 大井古铜矿冶炼技术及产品特征初探[J]. 有色金属, 2001, 53(3): 92-96.

Li Y X, Wang Z W, Wang L W, et al. Smelting technology of Dajing ancient copper mining and smelting site in Chifeng (Inner Mongolia Region)[J]. Nonferrous Metals Engineering, 2001, 53(3): 92-96.


储雪蕾, 霍卫国, 张巽, 等. 内蒙古林西县大井铜多金属矿床的硫、碳和铅同位素及成矿物质来源[J]. 岩石学报, 2002, 18(4): 566-574.

Chu X L, Huo W G, Zhang X, et al. S, C, and Pb isotopes and sources of metallogenetic elements of the Dajing Cu-polymetallic deposit in Linxi county, Inner Mongolia, China[J]. Acta Petrologica Sinica, 2002, 18(4): 566-574.


冯建忠, 艾霞, 吴俞斌, 等. 内蒙大井多金属矿床稳定同位素地球化学特征[J]. 吉林地质, 1994, 13(3): 60-66.

Feng J Z, Ai X, Wu Y B, et al. The stable isotopic geochemistry of the Dajing polymetallic deposit, Inner Mongolia[J]. Jilin Geology, 1994, 13(3): 60-66.


顾连兴, 汤晓茜, 吴昌志, 等. 辽宁红透山块状硫化物矿床矿石糜棱岩铜-金富集机制[J]. 地学前缘, 2004, 11(2): 339-351. doi: 10.3321/j.issn:1005-2321.2004.02.003

Gu L X, Tang X Q, Wu C Z, et al. Mechanisms of Cu-Au enrichment in ore mylonites of the Hongtoushan massive sulphide deposit, Liaoning, NE China[J].Earth Science Frontiers, 2004, 11(2): 339-351. doi: 10.3321/j.issn:1005-2321.2004.02.003


聂凤军, 裴荣富, 吴良士, 等. 内蒙古白乃庙地区铜(金)和金矿床钕、锶和铅同位素研究[J]. 矿床地质, 1994, 13(4): 331-344.

Nie F J, Pei R F, Wu L S, et al. Nd, Sr and Pb isotopic study of copper (gold) and gold deposits in Bainaimiao area, Inner Mongolia[J]. Mineral Deposits, 1994, 13(4): 331-344.


孙超. 小西南岔金铜矿床同位素地质学研究[J]. 矿产与地质, 1994, 8(2): 119-123.

Sun C. Research on isotope geology of Xiaoxinancha Au-Cu deposit[J]. Mineral Resources and Geology, 1994, 8(2): 119-123.


罗武干, 秦颍, 王昌燧, 等. 中条山与皖南地区古铜矿冶炼产物的比较分析[J]. 岩矿测试, 2007, 26(3): 209-212. doi: 10.3969/j.issn.0254-5357.2007.03.009

Luo W G, Qin Y, Wang C S, et al. Analysis of ancient smelting products from ancient copper ore refinery sites in Zhongtiaoshan area of Shanxi Province and Southern Anhui Province[J]. Acta Petrologica Sinica, 2007, 26(3): 209-212. doi: 10.3969/j.issn.0254-5357.2007.03.009


徐文忻, 汪礼明, 李蘅, 等. 中条山铜矿床同位素地球化学研究[J]. 地球学报, 2005, 26(Supplement): 130-133.

Xu W X, Wang L M, Li H, et al. Isotope geochemistry of copper deposits in the Zhongtiao mountain[J]. Acta Geoscientica Sinaca, 2005, 26(Supplement): 130-133.


张乾, 战新志, 裘愉卓, 等. 内蒙古孟恩陶勒盖银铅锌铟矿床的铅同位素组成及矿石铅的来源探讨[J]. 地球化学, 2002, 31(3): 253-258. doi: 10.3321/j.issn:0379-1726.2002.03.005

Zhang Q, Zhan X Z, Qiu Y Z, et al. Lead isotopic composition and lead source of the Meng'entaolegai Ag-Pb-Zn-In deposit in Inner Mongolia[J].Geochimica, 2002, 31(3): 253-258. doi: 10.3321/j.issn:0379-1726.2002.03.005


张丽华, 刁乃昌. 辽宁岫岩东胜铅矿铅同位素数据处理及物质来源的讨论[J]. 河北地质学院学报, 1984, 10(1): 57-63.

Zhang L H, Diao N C. The lead isotope data processing and a discussion of metal resources of the Dongsheng lead deposit, Xiuyan, Liaoning[J]. Journal of Hebei Geology of University, 1984, 10(1): 57-63.


张乾. 辽宁桓仁多金属矿床的铅同位素组成——显生宙单阶段幔源铅的证据[J]. 地球化学, 1994, 23(Supplement): 32-38.

Zhang Q. Isotopic compositions of Huanren polymetallic ore deposit, Liaoning Province:Evidence from phanerozoic single-stage mantle-source lead[J]. Geochimica, 1994, 23(Supplement): 32-38.


王碧雪.辽宁青城子钼-铅锌-银矿床硫化物标型特征研究[D].北京: 中国地质大学, 2017.

Wang B X.Mineral Typomorphic Characteristics of Sulfide Minerals on the Mo-Pb-Zn-Ag Ore Area in Qingchengzi Region, Liaoning Province, China[D]. Beijing: China University of Geosciences, 2017.


宋运红, 杨凤超, 闫国磊, 等. 辽宁青城子铅锌矿成矿流体特征和成矿物质来源示踪[J]. 地质与勘探, 2017, 53(2): 259-269.

Song Y H, Yang F C, Yan G L, et al. Characteristics of mineralization fluids and tracers of mineralization material sources of the Qingchengzi lead-zinc deposit in Liaoning Province[J]. Geology and Exploration, 2017, 53(2): 259-269.


蒋少涌. 辽宁青城子铅锌矿床的铅同位素组成及其地质特征[J]. 北京大学学报(自然科学版), 1987, (4): 112-119.

Jiang S Y. Pb-isotope composition at Qingchengzi lead-zinc deposit and its geological application[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1987, (4): 112-119.



秦颖, 罗武干, 王昌燧, 胡雅丽. 九连墩楚墓青铜器锈蚀产物的拉曼光谱分析. 岩矿测试, 2007, 26(2): 138-140.


罗武干, 胡雅丽, 秦颖, 王昌燧. 九连墩楚墓青铜器锈蚀产物的拉曼光谱分析. 岩矿测试, 2007, 26(2): 138-140.


赵庆令, 李清彩. iCAP 6300电感耦合等离子体发射光谱仪的常规维护方法. 岩矿测试, 2014, 33(5): 767-772.


秦颍, 胡雅丽, 黄凤春, 魏国锋, 王昌燧, 徐天进. 利用泥芯中稀土元素示踪青铜器的产地. 岩矿测试, 2007, 26(2): 145-149.


徐国栋, 王冠, 程江, 董随亮. 应用能谱扫描电镜与X射线衍射等分析技术研究西藏扎西康铅锌矿中伴生元素锰的赋存状态. 岩矿测试, 2014, 33(6): 808-812. doi: 10.15898/j.cnki.11-2131/td.2014.06.008


赵庆令, 李清彩. Thermo 6300型电感耦合等离子体发射光谱仪常见故障及排除方法. 岩矿测试, 2010, 29(2): 196-198.


王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.


王小强, 侯晓磊, 杨惠玲. 电感耦合等离子体发射光谱法同时测定铅锌矿中银铜铅锌. 岩矿测试, 2011, 30(5): 576-579.


卢彦, 冯勇, 李刚, 刘卫. 酸溶-电感耦合等离子发射光谱法测定密西西比型铅锌矿床矿石中的铅. 岩矿测试, 2015, 34(4): 442-447. doi: 10.15898/j.cnki.11-2131/td.2015.04.011


王坤阳, 徐金沙, 饶华文, 裴眼路. 扫描电镜-X射线能谱仪在丹巴地区铂族矿物物相特征分析中的应用. 岩矿测试, 2013, 32(6): 924-930.


刘江斌, 刘建军, 赵继宏, 马旻, 冯春红, 黄兴华. 电感耦合等离子体原子发射全谱直读光谱仪测定地质样品中的钽. 岩矿测试, 2005, (2): 151-153.


熊英, 王晓雁, 胡建平. 电感耦合等离子体发射光谱法同时测定铜铅锌矿石中铜铅锌钴镍等元素方法确认. 岩矿测试, 2011, 30(3): 299-304.


胡健平, 王日中, 杜宝华, 盛迪波, 罗志翔. 火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌. 岩矿测试, 2018, 37(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201706270110


孟时贤, 邓飞跃, 杨远, 苏卫汉, 闵晓芳, 雍伏曾. 电感耦合等离子体发射光谱法测定铅锌矿中15个主次量元素. 岩矿测试, 2015, 34(1): 48-54. doi: 10.15898/j.cnki.11-2131/td.2015.01.006


熊英, 吴峥, 董亚妮, 裴若会, 刘晓艳, 吴赫, 张艳. 封闭消解-阳离子交换分离-电感耦合等离子体质谱法测定铜铅锌矿石中的铼. 岩矿测试, 2015, 34(6): 623-628. doi: 10.15898/j.cnki.11-2131/td.2015.06.004


胡勇平, 于学峰, 郑林伟, 郑遗凡. 高分辨扫描电镜和X射线能谱Mapping技术研究碲矿物的成分和形态特征. 岩矿测试, 2015, 34(6): 643-651. doi: 10.15898/j.cnki.11-2131/td.2015.06.007


熊英, 吴赫, 王龙山. 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除. 岩矿测试, 2011, 30(1): 7-11.


张洁, 阳国运. 树脂交换分离-电感耦合等离子体质谱法测定铅锌矿中钨钼锡锗硒碲. 岩矿测试, 2018, 37(6): 657-663. doi: 10.15898/j.cnki.11-2131/td.201803250028


徐国栋, 葛建华, 王凤玉, 程江. 应用元素分析仪测定铅锌矿中的高含量硫. 岩矿测试, 2015, 34(2): 234-237. doi: 10.15898/j.cnki.11-2131/td.2015.02.014


杜米芳. 电感耦合等离子体发射光谱法快速测定钼铁合金中的钼. 岩矿测试, 2010, 29(1): 89-90.

  • PDF下载量(8)
  • 文章访问量(105)
  • HTML全文浏览量(28)
  • 被引次数(0)

Figures And Tables


李瑞亮, 金正耀, 陈彪, 田建花, 万欣, 李娜