【引用本文】 杨榕, 顾铁新, 潘含江, 等. GBW10010a大米标准物质复(研)制及数据特征[J]. 岩矿测试, 2020, 39(6): 866-877. doi: 10.15898/j.cnki.11-2131/td.202005210073
YANG Rong, GU Tie-xin, PAN Han-jiang, et al. Preparation of Reference Materials GBW10010a for Rice Component and Data Characteristics[J]. Rock and Mineral Analysis, 2020, 39(6): 866-877. doi: 10.15898/j.cnki.11-2131/td.202005210073

GBW10010a大米标准物质复(研)制及数据特征

中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000

收稿日期: 2020-04-09  修回日期: 2020-08-03  接受日期: 2020-09-19

基金项目: 中国地质科学院基本科研业务费项目“南极玄武岩、锂辉石及黝铜矿等36种地质标准物质研制”(YYWF201622)

作者简介: 杨榕, 硕士研究生, 工程师, 地球化学专业。E-mail:yangrong0516@163.com

通信作者: 顾铁新, 教授级高级工程师, 地球化学专业。E-mail:gutiexin@163.com

Preparation of Reference Materials GBW10010a for Rice Component and Data Characteristics

Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Science, Langfang 065000, China

Corresponding author: GU Tie-xin, gutiexin@163.com

Received Date: 2020-04-09
Revised Date: 2020-08-03
Accepted Date: 2020-09-19

摘要:随着我国对生态文明建设的重视,自然资源综合调查势在必行,对生物标准物质亦提出了新的需求。当前相关调研工作已经大面积开展,自然资源综合调查、农产品与食品安全评价都需要对生物样品元素组成进行准确测试,需要以生物标准物质作为生物成分测试量值比对和溯源的基础,因此对生物基体标准物质的需求量大幅增加。大米作为主要粮食之一,其食品安全日益受到重视,对大米中的化学成分进行准确的分析测试具有重要的现实意义,因而对大米标准物质的需求量尤为突出,但目前大米成分分析标准物质已供不应求。本文严格按照《标准物质定值的通用原则及统计学原理》(JJF 1343—2012)和《地质分析标准物质的研制》(JJF 1646—2017)等相关规范要求,开展了GBW10010a大米成分分析标准物质的复(研)制工作,包括样品采集、加工制备、均匀性检验、稳定性检验、多家实验室协作定值测试及不确定度评定等关键环节。结果表明:本次复(研)制的大米标准物质定值成分多样、量值准确可靠,符合国家一级标准物质的要求。GBW10010a共定值54项主微量元素,包括Ag、Al、As、B、Ba、Be、Bi、Ca、Cd、Ce、Co、Cr、Cs、Cu、Dy、Er、Eu、Fe、Gd、Ge、Hg、Ho、K、La、Li、Ho、Mg、Mn、Mo、N、Na、Nb、Nd、Ni、P、Pb、Pr、Rb、S、Sb、Sc、Se、Si、Sm、Sr、Tb、Th、Tl、Tm、U、V、Y、Yb、Zn,其中的39项元素给出了标准值及不确定度,包括Ag、Al、As、B、Ba、Ca、Cd、Ce、Co、Cs、Cu、Dy、Er、Fe、Hg、K、Li、Mg、Mn、Mo、N、Na、Nd、Ni、P、Pb、Pr、Rb、S、Sb、Se、Si、Sm、Sr、Tb、Tl、Y、Yb、Zn;15项元素提供参考值,包括Be、Bi、Cr、Eu、Gd、Ge、Ho、Ho、La、Nb、Sc、Th、Tm、U、V。与原有GBW10010大米标准物质相比较,GBW10010a中As、Cd、Co、Cr、Cu、Hg、Mn、Mo、Ni、Zn等重金属元素含量显著下降,其中Cd、Cu、Zn降幅较大,分别下降约39%、43%、38.7%,一定程度上反映了农田生态环境的改善。本批标准物质定值元素总数量增加了6项,新增定值元素Ag、Nb(Nb给出参考值),并且各项元素不确定度范围整体上有所缩小,如Al、Cd、Cu、Fe、K、Mg、Mo、Na、P、Pb、Se、Zn等对生物易有影响的重要元素,表明了地质分析测试方法技术的进步及定值水平的提高。本批标准物质定值元素涵盖了具有生物效应的大部分主微量元素,适用于农业生态环境地球化学调查与评价、生物样品测试、农产品质量与食品安全评价样品测试时的分析仪器校正、分析方法评价和分析质量监控等多个领域。

关键词: 标准物质, 大米, 复(研)制, 均匀性检验, 稳定性检验, 定值元素, 质量监控

要点

(1) 复(研)制了GBW10010a生物成分分析标准物质,参与定值元素54项,其中39项元素给出标准值及不确定度,15项元素提供参考值。

(2) 认证值的不确定度由均匀性、稳定性和定值三部分引起的不确定度合成。

(3) 与GBW10010相比,GBW10010a定值指标多、准确度高,定值元素总数量增加了7项,各项元素不确定度范围整体缩小。

Preparation of Reference Materials GBW10010a for Rice Component and Data Characteristics

ABSTRACT

BACKGROUND:

With the increased attention paid for the construction of ecological civilization, a comprehensive survey of natural resources is imperative, and new requirements for biological reference materials have also been put forward. At present, relevant research work has been widely carried out. The comprehensive investigation of natural resources, agricultural products and food safety evaluation all need to accurately test the element composition of biological samples, and biological reference materials are needed as the basis for the comparison and traceability of biological components. The demand for biological matrix reference materials has increased significantly. As one of the main foods, the food safety of rice has been paid more and more attention. It is of great practical significance to carry out accurate analysis of the chemical components in rice. Therefore, the demand for rice is particularly prominent, but the rice reference materials for composition analysis are still lacking.

OBJECTIVES:

To develop rice certified reference material (GBW10010a) and compare it with the data characteristics of GBW10010.

METHODS:

The rice certified reference material (GBW10010a) was prepared in strict accordance with relevant specifications. The collected candidates were prepared through coarse crushing, drying, fine crushing, sieving, blending and other steps. The particle size distribution was detected by BT-9000ST laser particle size analyzer. 15 bottle samples were randomly selected and homogeneity testing was carried out by ICP-MS and ICP-OES, etc. The data were statistically calculated by one-way ANOVA, indicating good homogeneity of the samples. The long-term stability of the standard material under the specified storage conditions was investigated. The linear model was used to evaluate the stability of the sample. The determination of 60 components was carried out by means of ICP-MS, ICP-OES, AFS, COL, VOL, XRF, IC and other Analytical test methods.

RESULTS:

The rice reference material prepared in this research has diverse fixed value components, accurate and reliable measurement values, and meet the requirements of national first-level reference material. GBW10010a has a total of 54 main trace elements. 39 elements have certified values and uncertainties and 15 elements only have reference values. The content of heavy metal elements such as As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Zn in GBW10010a decreased significantly, among which Cd, Cu, and Zn decreased by about 39%, 43% and 38.7%, respectively.

CONCLUSIONS:

To a certain extent, the values reflects the improvement of farmland ecological environment. Compared with the original GBW10010, the total number of certified value elements has increased by 6 items, including Ag and Nb (Nb gives reference values). Moreover, the uncertainty of each element is reduced, including biological-related elements Al, Cd, Cu, Fe, K, Mg, Mo, Na, P, Pb, Se, and Zn. The reduction indicates the technological advancement of the geological analysis and the improvement of the certified value level. In addition, the content of heavy metal elements in GBW10010a decreased significantly, reflecting the improvement of farmland ecological environment. The designated elements of the reference materials cover most of the main and trace elements with biological effects, and are suitable for the calibration of analytical instruments, evaluation of analytical methods, and monitoring analytical quality during agricultural ecological environment geochemical surveys and evaluation, biological sample analysis, agricultural product quality and food safety evaluation.

KEY WORDS: certified reference material, rice, remanufacturing, homogeneity test, stability test, certified value element, quality monitoring

HIGHLIGHTS

(1) A rice certified reference material GBW10010a was developed. A total of 54 elements have been certificated which included 39 elements with certified values and uncertainties and 15 elements with reference values.

(2) The uncertainty of a certificated value integrated the uncertainties caused by homogeneity, stability and values.

(3) Compared with GBW10010, GBW10010a has much more certified value indicators and higher accuracy. The total number of certified value elements has increased by 7 items, and the uncertainty of each element has been wholly reduced.

本文参考文献

[1]

Zhao H F, Yan H Y, Zhang L M, et al. Mercury contents in rice and potential health risks across China[J]. Environment International, 2019, 126: 406-412.

[2]

李苗. 新时代下我国粮食产量的影响因素分析[J]. 价值工程, 2019, (14): 150-152.

Li M. Analysis on the influencing factors of grain yield in China in the new era[J]. Value Engineering, 2019, (14): 150-152.

[3]

王欣梅, 肖革新, 曹贤文, 等. 湖南省大米中镉污染风险监测现状分析及应对策略[J]. 环境卫生学杂志, 2019, 9(4): 396-400.

Wang X M, Xiao G X, Cao X W, et al. Cadmium pollution in Hunan rice risk monitoring present situation analysis and strategies[J]. Journal of Environmental Health Magazine, 2019, 9(4): 396-400.

[4]

Qian Y Z, Chen C, Zhang Q, et al. Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk[J]. Food Control, 2010, 21(12): 1757-1763.

[5]

Kato L S, Nadai F E A, Bacchi M A, et al. Instrumental neutron activation analysis for assessing homogeneity of a whole rice candidate reference material[J]. Journal of Radioanalytical & Nuclear Chemistry, 2013, 297(2): 271-275.

[6]

Wang Y J, Han J L, Wang L, et al. Total mercury and methylmercury in rice:Exposure and health implications in Bangladesh[J]. Environmental Pollution:Part A, 2020, (265): 1-8.

[7]

Lu A X, Li B R, Li J, et al. Heavy metals in paddy soil-rice systems of industrial and township areas from subtropical China:Levels, transfer and health risks[J]. Journal of Geochemical Exploration, 2018, 194: 210-217.

[8]

王巧云, 何欣, 王锐, 等. 国内外标准物质发展现状[J]. 化学试剂, 2014, (4): 289-296.

Wang Q Y, He X, Wang R, et al. Development of reference materials in China and abroad[J]. Chemical Reagents, 2014, (4): 289-296.

[9]

The international database for certified reference materials[DB/OL].http://www.comar.bam.de/en/.

[10]

刘妹, 顾铁新, 潘含江, 等. 泛滥平原沉积物标准物质研制[J]. 岩矿测试, 2018, 37(5): 558-571.

Liu M, Gu T X, Pan H J, et al. Preparation of seven reference materials for floodplain sediments[J]. Rock and Mineral Analysis, 2018, 37(5): 558-571.

[11]

程志中, 刘妹, 张勤, 等. 水系沉积物标准物质研制[J]. 岩矿测试, 2011, 30(6): 714-722.

Cheng Z Z, Liu M, Zhang Q, et al. Preparation of geochemical reference materials of stream sediments[J]. Rock and Mineral Analysis, 2011, 30(6): 714-722.

[12]

刘素丽, 王宏伟, 赵梅, 等. 食品中基体标准物质研究进展[J]. 食品安全质量检测学报, 2019, 10(1): 8-13.

Liu S L, Wang H W, Zhao M, et al. Research progress of matrix reference materials for food[J]. Journal of Food Safety and Quality, 2019, 10(1): 8-13.

[13]

程志中, 黄宏库, 刘妹, 等. 大米成分分析标准物质的研制[J]. 化学分析计量, 2011, 20(3): 7-10.

Cheng Z Z, Huang H K, Liu M, et al. Preparation of reference materials for rice component analysis[J]. Chemical Analysis and Meterage, 2011, 20(3): 7-10.

[14]

王晓红, 王毅民, 高玉淑, 等. 地质标准物质均匀性检验方法评价与探讨[J]. 岩矿测试, 2010, 29(6): 735-741.

Wang X H, Wang Y M, Gao Y S, et al. A review on homogeneity testing techniques for geochemical reference material in China[J]. Rock and Mineral Analysis, 2010, 29(6): 735-741.

[15]

鄢明才,王春书. 地球化学标准物质的研制——植物光谱金[M] . 北京: 地质出版社, 1991: 1-124.

Yan M C,Wang C S. Development of geochemical reference materials-Plants spectra of gold[M] . Beijing: Geological Publishing House, 1991: 1-124.
[16]

全浩,韩永志. 标准物质及其应用技术(第二版)[M] . 北京: 中国标准出版社, 2003: 225-230.

Quan H,Han Y Z. Reference materials and their applied technology (2nd edition)[M] . Beijing: China Standard Publishing House, 2003: 225-230.
[17]

杨忠芳,朱立,陈岳龙. 现代环境地球化学[M] . 北京: 地质出版社, 1999: 154-205.

Yang Z F,Zhu L,Chen Y L. Modern environmental geochemistry[M] . Beijing: Geological Publishing House, 1999: 154-205.
[18]

Xie X J, Ren T X. National geochemical mapping and en-vironmental geochemistry-Progress in China[J]. Journal of Geochemical Exploration, 1993, 49(1-2): 15-34.

[19]

谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700-716.

Xie X J, Ren T X, Xi X H, et al. The implementation of the Regional Geochemistry-National Recon-Naissance Program (RGNR) in China in the past thirty years[J]. Acta Geoscientica Sinica, 2009, 30(6): 700-716.

[20]

谢学锦, 叶家瑜, 鄢明才, 等. 川滇黔桂76种元素地球化学图编制中分析方法与分析质量研究(三)考核不同实验室分析质量的新方法[J]. 地质通报, 2003, 22(1): 1-11.

Xie X J, Ye J Y, Yan M C, et al. Analytic methods and quality in the compilation of 76 elements geochemical atlas of Sichuan, Yunnan, Guizhou, Guangxi Provinces of China. (3):New proficiency test for analytical laboratories involved in environmental geochemical mapping[J].Geological Bulletin of China, 2003, 22(1): 1-11.

[21]

罗立强,吴晓军. 现代地质与地球化学分析研究进展[M] . 北京: 地质出版社, 2014: 417

Luo L Q,Wu X J. Advances in geoanalysis[M] . Beijing: Geological Publishing House, 2014: 417
[22]

郑存江. 地质标准物质不确定度评估方法初探[J]. 岩矿测试, 2005, 24(4): 284-286.

Zheng C J. Primary investigation for evaluation of uncertainty of geological reference materials[J]. Rock and Mineral Analysis, 2005, 24(4): 284-286.

[23]

李国会, 樊守忠. X射线荧光光谱法在标准物质均匀性检验中的应用[J]. 地质实验室, 1995, 11(1): 40-43.

Li G H, Fan S Z. Application of X-ray fluorescence method in test for homogeneity of reference materials[J]. Geological Laboratory, 1995, 11(1): 40-43.

[24]

詹杰, 魏树和, 牛荣成, 等. 我国稻田土壤镉污染现状及安全生产新措施[J]. 农业环境科学学报, 2012, 31(7): 1257-1263.

Zhan J, Wei S H, Niu R C, et al. Advances of cadmium contaminated paddy soil research and new measure of its safe production in China:A review[J]. Journal of Agro-Environment Science, 2012, 31(7): 1257-1263.

[25]

庄国泰. 我国土壤污染现状与防控策略[J]. 中国科学院院刊, 2015, 30(4): 477-483.

Zhuang G T. Current situation of national soil pollution and strategies on prevention and control[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 477-483.

[26]

胡鹏杰, 李柱, 吴龙华, 等. 我国农田土壤重金属污染修复技术、问题及对策诌议[J]. 农业现代化研究, 2018, 39(4): 535-542.

Hu P J, Li Z, Wu L H, et al. Current remediation technologies of heavy metal polluted farmland soil in China:Progress, challenge and countermeasure[J]. Research of Agricultural Modernization, 2018, 39(4): 535-542.

[27]

习小山. 浅析岩矿分析与测试技术在当前阶段的应用与发展趋势[J]. 中国新技术新产品, 2016, (21): 174-175.

Xi X S. The application and development trend of rock mine analysis and testing technology in the current stage[J]. New Technology & New Products of China, 2016, (21): 174-175.

[28]

汪艳芸, 邓晃. 岩矿分析技术发展方向及其在实物地质资料中的应用浅析[J]. 中国矿业, 2017, (2): 374-376.

Wang Y Y, Deng H. A brief analysis of the development direction of rock ore analysis technology and its application in physical geological data[J]. China Mining Magazine, 2017, (2): 374-376.

[29]

尹明. 我国地质分析测试技术发展现状及趋势[J]. 岩矿测试, 2009, 28(1): 37-52.

Yin M. Progress and prospect on geoanalytical techniques in China[J]. Rock and Mineral Analysis, 2009, 28(1): 37-52.

[30]

刘妹, 顾铁新, 史长义, 等. 我国主要土壤类型元素地球化学形态成分标准物质研制[J]. 物探与化探, 2008, 32(5): 492-496.

Liu M, Gu T X, Shi C Y, et al. The preparation of geochemical speciation certified reference materials for main soil types of China[J]. Geophysical and Geochemical Exploration, 2008, 32(5): 492-496.

相似文献(共19条)

[1]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[2]

辛文彩, 夏宁, 徐磊, 朱志刚. 长江三角洲沉积物标准物质研制. 岩矿测试, 2017, 36(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201609210141

[3]

李洁, 陈文, 刘新宇, 张彦, 陈岳龙, 杨莉. 新生代透长石SK01作为39Ar-40Ar法定年标准物质的均匀性检验. 岩矿测试, 2013, 32(2): 213-220.

[4]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[5]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[6]

吴石头, 王亚平, 詹秀春, AndreasKronz, KlausSimon, 许春雪, 田欢. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究. 岩矿测试, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007

[7]

刘妹, 顾铁新, 潘含江, 孙彬彬, 黄宏库, 杨榕, 鄢卫东. 泛滥平原沉积物标准物质研制. 岩矿测试, 2018, 37(5): 558-571. doi: 10.15898/j.cnki.11-2131/td.201801080002

[8]

李科, 张琳, 刘福亮, 贾艳琨. 有机化学物质碳氮稳定同位素系列标准物质研制. 岩矿测试, 2020, 39(5): 753-761. doi: 10.15898/j.cnki.11-2131/td.201905290074

[9]

查向平, 龚冰, 郑永飞. 低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化. 岩矿测试, 2014, 33(4): 453-467.

[10]

刘玉龙, 夏凡, 张洪志. 挥发性有机污染物标准物质使用的短期稳定性评价. 岩矿测试, 2012, 31(4): 647-652.

[11]

李献华, 刘颖. 等离子体质谱测定岩石标准物质中痕量元素—对某些元素定值的探讨. 岩矿测试, 1998, (2): 112-116.

[12]

杨理勤, 穆新华, 郑振云. 常量金标准物质定值中离群值的统计识别. 岩矿测试, 2013, 32(3): 483-486.

[13]

余必胜, 张自超. 同位素地质样品分析的质量监控与质量评估. 岩矿测试, 2000, (2): 137-141.

[14]

陈立军, 汪涛. 1:20万区域化探样品的分析测试质量监控. 岩矿测试, 2004, (2): 143-147.

[15]

杨锦发. 多目标生态地球化学土壤样品高精度测试与质量监控. 岩矿测试, 2007, 26(1): 36-39.

[16]

赵玉岩, 陆继龙, 郝立波, 孙立吉, 王连和. 基于网络的地球化学样品分析管理和质量监控系统. 岩矿测试, 2010, 29(6): 727-732.

[17]

金秉慧. 地质标准物质十年回顾. 岩矿测试, 2003, (3): 188-200.

[18]

郭玉林, 才书林. X射线荧光光谱法在有色金属矿石标准物质定值分析中的应用. 岩矿测试, 1992, (3): 260-264.

[19]

鄢明才, 王春书. 铂族元素地球化学标准物质的研制. 岩矿测试, 1998, (1): 1-21.

计量
  • PDF下载量(12)
  • 文章访问量(528)
  • HTML全文浏览量(97)
  • 被引次数(0)
目录

Figures And Tables

GBW10010a大米标准物质复(研)制及数据特征

杨榕, 顾铁新, 潘含江, 刘妹, 周国华