【引用本文】 苗煦, 史淼, 王礼胜, . 湖南临武黑色石英岩质玉矿物组成特征及成因初探[J]. 岩矿测试, 2021, 40(4): 522-531. doi: 10.15898/j.cnki.11-2131/td.202012030155
MIAO Xu, SHI Miao, WANG Li-sheng. Mineral Composition and Genesis of Black Quartzite Jade from Linwu County, Hunan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 522-531. doi: 10.15898/j.cnki.11-2131/td.202012030155

湖南临武黑色石英岩质玉矿物组成特征及成因初探

1. 

河北地质大学宝石与材料学院, 河北 石家庄 050031

2. 

河北省战略性关键矿产资源重点实验室, 河北 石家庄 050031

收稿日期: 2020-12-03  修回日期: 2021-06-18  接受日期: 2021-07-02

基金项目: 国家自然科学基金项目(42002156);河北省高等学校科学技术研究项目(QN2021027);河北地质大学区域地质与成矿作用重点实验室开放基金(HGU-RGM2003)

作者简介: 苗煦, 硕士, 矿物学、岩石学、矿床学专业, 从事宝石学研究。E-mail: 441361174@qq.com

通信作者: 史淼, 博士, 讲师, 从事宝石矿物、矿床学相关研究及教学工作。E-mail: miaoer727@126.com

Mineral Composition and Genesis of Black Quartzite Jade from Linwu County, Hunan Province

1. 

School of Gemmology and Materials Science, Hebei GEO University, Shijiazhuang 050031, China

2. 

Key Laboratory of Strategic Key Mineral Resources in Hebei Province, Shijiazhuang 050031, China

Corresponding author: SHI Miao, miaoer727@126.com

Received Date: 2020-12-03
Revised Date: 2021-06-18
Accepted Date: 2021-07-02

摘要:石英岩质玉是一种市场上常见且产地较多的玉石品种,本文基于前人石英岩质玉的研究基础,通过常规宝石学测试、红外光谱测试、偏反光显微镜下观察,以及采用X射线粉晶衍射、X射线荧光光谱、电感耦合等离子体质谱仪对样品的宝石学特征、矿物组成进行分析,并对其成因进行讨论。结果表明:该地区黑色石英岩质玉多为中-细粒粒状结构,偏光显微镜观察可见多种变晶/变余结构;成分中主要矿物石英平均含量为44.7%,次要矿物云母、长石平均含量合计31.0%,黏土矿物平均含量为12.7%,另含有有机碳以及红柱石、铁铝榴石、黄铁矿等铁质矿物;结合样品结构、构造特征及矿物化学成分分析可知,样品为典型副变质岩系的中、低温热液交代型区域变质岩,属绿片岩相,原岩为富铝且富含石英、长石的沉积岩,其形成的构造环境属大陆边缘构造。本研究为该地区石英岩质玉的矿物组成鉴定提供了多手段技术支撑。

关键词: 石英岩质玉, 矿物组成, 成矿, 偏反光显微镜, X射线粉晶衍射, X射线荧光光谱法, 电感耦合等离子体质谱法

要点

(1) 利用偏反光显微镜下观察、X射线粉晶衍射、X射线荧光光谱、电感耦合等离子体质谱对湖南临武黑色石英岩质玉矿物组成进行系统分析和成因探讨。

(2) 湖南临武黑色石英岩质玉矿物组成主要有石英、云母、长石、石墨、黏土矿物等。

(3) 湖南临武黑色石英岩质玉为副变质岩系的中、低温热液交代型区域变质岩。

Mineral Composition and Genesis of Black Quartzite Jade from Linwu County, Hunan Province

ABSTRACT

BACKGROUND:

Black quartzite jade is a type of commonly and commercially available jade. Many areas produce this gem.

OBJECTIVES:

To analyze the gemological characteristics and mineral composition of the jade samples and to discuss their genesis.

METHODS:

Conventional gemological tests, infrared spectrum tests, polarizing microscopy, X-ray powder diffraction analysis, X-ray fluorescence spectrometry, and inductively coupled plasma mass spectrometry were used.

RESULTS:

Black quartzite jade from the Linwu County, Hunan Province, showed a medium-fine grain texture. The polarizing microscopy results revealed many crytalloblastic or palimpsest textures. The content of the main mineral quartz was 44.7%, the content of secondary minerals (mica and feldspar) was 31.0%, and the content of clay minerals was 12.7%. Minor organic carbon, iron minerals, andalusite, almandine, and pyrite were also observed.

CONCLUSIONS:

Based on the main textures, structures, configuration features, and chemical compositions, the studied samples are regarded as typical low-to-moderate temperature hydrothermal regional metamorphic rocks, which are classified as greenschist facies. The source rock was composed of sedimentary rocks abundant with aluminum, quartz, and feldspar. The tectonic environment for its formation belonged to the continental margin. This study provides technical support for the identification of the mineral composition of quartzite jades from the Linwu County, Hunan Province.

KEY WORDS: quartzite jade, mineral composition, mineralization, polarizing microscope, X-ray powder diffraction, X-ray fluorescence spectrometry, inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) The mineral composition of black quartzite jade from Linwu County, Hunan Province, was analyzed through polarizing microscopy, powder X-ray diffraction analysis, X-ray fluorescence spectrometry, and inductively coupled plasma mass spectrometry, and the genesis of the jade was discussed.

(2) The main minerals of black quartzite jade from Linwu County, were quartz, mica, feldspar, graphite, and clay minerals.

(3) Black quartzite jade from the Linwu County, is regarded as a typical low-to-moderate temperature hydrothermal regional metamorphic rock.

本文参考文献

[1]

张蓓莉. 系统宝石学[M] . 北京: 地质出版社, 2006: 374-379.

Zhang B L. Systematic gemmology[M] . Beijing: Geological Publishing House, 2006: 374-379.
[2]

王长秋,张丽葵. 珠宝玉石学[M] . 北京: 地质出版社, 2017: 560-569.

Wang C Q,Zhang L K. Gemology[M] . Beijing: Geological Publishing House, 2017: 560-569.
[3]

李胜荣. 结晶学与矿物学[M] . 北京: 地质出版社, 2008: 188-190.

Li S R. Crystallography and mineralogy[M] . Beijing: Geology Publishing House, 2008: 188-190.
[4]

刘晓亮, 孟庆鹏, 陈熙皓, 等. 经变质作用形成的石英质玉的宝石学特征[J]. 宝石和宝石学杂志, 2020, 22(1): 33-38.

Liu X L, Meng Q P, Chen X H, et al. Gemmological characteristics of quartzose jade by metamorphism[J]. Journal of Gems and Gemmology, 2020, 22(1): 33-38.

[5]

周丹怡, 陈华, 陆太进, 等. 广西桂林不同颜色石英质玉的宝石学特征对比研究[C]//中国国际珠宝首饰学术交流会论文集(2017). 2017: 215-219.

Zhou D Y, Chen H, Lu T J, et al. Comparative study on gemmological characteristics of different color quartz jade in Guilin, Guangxi[C]//Proceedings of China International Jewelry Academic Exchange Conference (2017). 2017: 215-219.

[6]

王琦. 石英质玉的分类特征与市场现状[J]. 中国地名, 2020, (2): 39.

Wang Q. Classification characteristics and market status of quartz jade[J]. China Place Name, 2020, (2): 39.

[7]

王濮,潘兆橹,翁玲宝. 系统矿物学[M] . 北京: 地质出版社, 1984: 169-180.

Wang P,Pan Z L,Weng L B. Systematic mineralogy[M] . Beijing: Geological Publishing House, 1984: 169-180.
[8]

姚凤良,孙丰月. 矿床学教程[M] . 北京: 地质出版社, 2006: 215-227.

Yao F L,Sun F Y. Course in mineral deposits[M] . Beijing: Geological Publishing House, 2006: 215-227.
[9]

张高鑫, 刘建朝, 张海东, 等. 陕西勉略宁地块车渡磁铁石英岩型金矿床多期成矿作用[J]. 地球科学与环境学报, 2020, 42(3): 355-365.

Zhang G X, Liu J C, Zhang H D, et al. Multistage mineralization of Chedu magnetite quartzite gold deposit in Mianluening Block of Shannxi, China[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 355-365.

[10]

李孝文, 曹淑云, 刘建华, 等. 北阿尔金余石山含金石英脉地质构造特征与流体作用[J]. 大地构造与成矿学, 2021, . doi: 10.16539/j.ddgzyckx.2020.05.014:1-33

Li X W, Cao S Y, Liu J H, et al. Geological structure characteristics and fluid activity of the gold-bearing quartz veins on the Yushishan area, north Altyn Tagh[J].Geotectonica Et Metallogenia, 2021, . doi: 10.16539/j.ddgzyckx.2020.05.014:1-33

[11]

程奋维. 白尖山脉石英矿床成因浅析[J]. 甘肃冶金, 2020, 42(3): 106-108. doi: 10.3969/j.issn.1672-4461.2020.03.031

Cheng F W. Genesis of quartz deposit in Baijian Mountain[J].Gansu Metallurgy, 2020, 42(3): 106-108. doi: 10.3969/j.issn.1672-4461.2020.03.031

[12]

颜玲亚, 高树学, 陈正国, 等. 我国脉石英矿床类型及成矿规律[J]. 中国非金属矿工业导刊, 2020, (5): 10-14. doi: 10.3969/j.issn.1007-9386.2020.05.004

Yan Y L, Gao S X, Chen Z G, et al. Types and metallogenic regularity of vein quartz deposits in China[J].China Non-Metallic Mining Industry Herald, 2020, (5): 10-14. doi: 10.3969/j.issn.1007-9386.2020.05.004

[13]

Moxon T W, Palyanova G. Agate genesis: A continuing enigma[J].Minerals, 2020, 10(11): 953. doi: 10.3390/min10110953

[14]

Moxon T, Reed S. Agate and chalcedony from igneous and sedimentary hosts aged from 13 to 3480Ma: A cathodoluminescence study[J].Mineralogical Magazine, 2006, 70(5): 485-498. doi: 10.1180/0026461067050347

[15]

李伟良, 王谦. 临武县通天玉相关特征及成因初探[J]. 国土资源导刊, 2015, 12(4): 46-49. doi: 10.3969/j.issn.1672-5603.2015.04.010

Li W L, Wang Q. Preliminary exploration of the characteristics and the genesis of Tongtian Jade in Linwu County[J].Land & Resources Herald, 2015, 12(4): 46-49. doi: 10.3969/j.issn.1672-5603.2015.04.010

[16]

袁顺达, 彭建堂, 李向前, 等. 湖南香花岭锡多金属矿床C、O、Sr同位素地球化学[J]. 地质学报, 2008, 82(11): 2-10.

Yuan S D, Peng J T, Li X Q, et al. Carbon, oxygen and strontium isotope geochemistry of calcites from the Xianghualing tin-polymetallic deposit, Hunan Province[J]. Acta Geologica Sinica, 2008, 82(11): 2-10.

[17]

徐质彬, 张利军, 杨晓弘, 等. 湖南临武通天山石英岩质玉矿床地质特征与成矿规律[J]. 资源信息与工程, 2018, 33(5): 47-51. doi: 10.3969/j.issn.2095-5391.2018.05.021

Xu Z B, Zhang L J, Yang X H, et al. Geological characteristics and metallogenic regularity of ore deposits of the black quartzite jade in Tongtian Mountain Linwu District, Hunan Province[J].Resource Information and Engineering, 2018, 33(5): 47-51. doi: 10.3969/j.issn.2095-5391.2018.05.021

[18]

罗彬,喻云峰,廖佳. 珠宝玉石无损检测光谱库及解析[M] . 武汉: 中国地质大学出版社, 2019: 216-217.

Luo B,Yu Y F,Liao J. Nondestructive testing spectrum library of jewelry and jade and its solution[M] . Wuhan: China University of Geosciences Press, 2019: 216-217.
[19]

常丽华,陈曼云,金巍. 透明矿物薄片鉴定手册[M] . 北京: 地质出版社, 2006: 20-151.

Chang L H,Chen M Y,Jin W. A manual for thin section identification of transparent minerals[M] . Beijing: Geological Publishing House, 2006: 20-151.
[20]

陈曼云,金巍,郑常青. 变质岩鉴定手册[M] . 北京: 地质出版社, 2009: 41-73.

Chen M Y,Jin W,Zheng C Q. Handbook of metamorphic rock identification[M] . Beijing: Geological Publishing House, 2009: 41-73.
[21]

胡玲,刘俊来,纪沫. 变形显微构造识别手册[M] . 北京: 地质出版社, 2015: 23-31.

Hu L,Liu J L,Ji M. Handbook of deformation microstructure identification[M] . Beijing: Geological Publishing House, 2015: 23-31.
[22]

柳生祥, 曾俊杰, 张学奎, 等. 祁连造山带东段皋兰岩群叠加变质作用及其形成环境[J]. 甘肃地质, 2020, 29(Supplement 2): 22-28.

Liu S X, Zeng J J, Zhang X K, et al. Superimposed metamorphism of the Gaolan Group in the eastern segment of Qilian Orogenic Belt[J]. Gansu Geology, 2020, 29(Supplement 2): 22-28.

[23]

Shaw D M. The origin of the Apsley gneiss, Ontario[J]. Canadian Journal of Earth Science, 1972, : 18-35.

[24]

陶瑞. 滇西凤庆泥盆系"温泉组"岩石特征及变质变形分析[D]. 成都: 成都理工大学, 2019.

Tao R. The analysis of characteristics, metamorphism and deformation of rock in Devonian Wenquan Formation, Fengqing, western Yunnan[D]. Chengdu: Chengdu University of Technology, 2019.

[25]

Girty G H, Ridge D L. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1): 107-118.

[26]

孙乾龙, 夏冬, 弓小平, 等. 新疆北山清白山花岗岩体成因及构造环境分析[J]. 新疆地质, 2020, 38(3): 298-304. doi: 10.3969/j.issn.1000-8845.2020.03.004

Sun Q L, Xia D, Gong X P, et al. Genesis and tectonic environment of Qingbaishan granite in Beishan, Xinjiang[J].Xinjiang Geology, 2020, 38(3): 298-304. doi: 10.3969/j.issn.1000-8845.2020.03.004

[27]

周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305.

Zhou W, Zeng M, Wang J, et al. Determination of major elements and rare earth elements in rare earth ores by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305.

[28]

Jewell P W, Stallard R F. Geochemistry and paleoceano graphic setting of central Nevada bedded barites[J].The Journal of Geology, 1991, 99(2): 151-170. doi: 10.1086/629482

[29]

谈昕, 邱振, 卢斌, 等. 华南地区不同时代硅质岩地球化学特征及地质意义[J]. 科学技术与工程, 2018, 18(2): 7-19. doi: 10.3969/j.issn.1671-1815.2018.02.002

Tan X, Qiu Z, Lu B, et al. Geochemical characteristics for siliceous rocks of different ages in South China and their geological significance[J].Science Technology and Engineering, 2018, 18(2): 7-19. doi: 10.3969/j.issn.1671-1815.2018.02.002

[30]

王西荣. 安徽省霍邱铁矿含铁岩系中斜长片麻岩黑云母-石榴石地球化学特征及其地质指示意义[J]. 矿物岩石, 2018, (2): 1-10.

Wang X R. Biotite garnet geochemistry of plagioclase gneiss in the iron bearing rock series of Huoqiu iron deposit, Anhui Province and its geological significance[J]. Mineral Rock, 2018, (2): 1-10.

[31]

黄长煌. 福建东山亲营山岩组变质岩石榴石-黑云母地质温度计的应用[J]. 华东地质, 2019, 40(1): 1-10. doi: 10.3969/j.issn.1674-3504.2019.01.001

Huang C H. Application of garnet biotite geothermometer in metamorphic rocks of Qinyingshan Formation, Dongshan, Fujian Province[J].Geology of East China, 2019, 40(1): 1-10. doi: 10.3969/j.issn.1674-3504.2019.01.001

[32]

张茜, 余谦, 王剑, 等. 应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境[J]. 岩矿测试, 2018, 37(2): 217-224.

Zhang Q, Yu Q, Wang J, et al. Study on REE characteristics and sedimentary environment of Longmaxi Formation shale in southwest Sichuan by ICP-MS[J]. Rock and Mineral Analysis, 2018, 37(2): 217-224.

[33]

赵振明, 计文化, 李文明, 等. 北山南部敦煌岩群铁矿化磁铁石英岩的变质成因[J]. 地质与勘探, 2018, 54(4): 689-701. doi: 10.3969/j.issn.0495-5331.2018.04.003

Zhao Z M, Ji W H, Li W M, et al. Metamorphic genesis of magnetite quartzite with iron mineralization in the Dunhuang Group of southern Beishan Region[J].Geology and Exploration, 2018, 54(4): 689-701. doi: 10.3969/j.issn.0495-5331.2018.04.003

[34]

柳生祥, 曾俊杰, 张学奎, 等. 祁连造山带东段皋兰岩群叠加变质作用及其形成环境[J]. 甘肃地质, 2020, 29(3): 22-28.

Liu S X, Zeng J J, Zhang X K, et al. Superimposed metamorphism of the Gaolan Group in the eastern segment of Qilian orogenic belt[J]. Gansu Geology, 2020, 29(3): 22-28.

相似文献(共20条)

[1]

宋党育, 张军营, 郑楚光, 李建欣. X射线衍射数据分析系统评价. 岩矿测试, 2008, 27(3): 189-193.

[2]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[3]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[4]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[5]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[6]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[7]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[8]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[9]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[10]

闵红, 刘倩, 张金阳, 周海明, 严德天, 邢彦军, 李晨, 刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征. 岩矿测试, 2021, 40(1): 74-84. doi: 10.15898/j.cnki.11-2131/td.202004020038

[11]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[12]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[13]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[14]

朱丽, 杨永琼, 顾汉念, 温汉捷, 杜胜江, 罗重光. 电感耦合等离子体质谱-X射线衍射法研究云南玉溪和美国内华达地区黏土型锂资源矿物学特征. 岩矿测试, 2021, 40(4): 532-541. doi: 10.15898/j.cnki.11-2131/td.202008130112

[15]

文春华, 罗小亚, 李胜苗, 李建康. 应用X射线荧光光谱-电感耦合等离子体质谱法研究湖南传梓源地区稀有金属矿床伟晶岩地球化学特征. 岩矿测试, 2015, 34(3): 359-365. doi: 10.15898/j.cnki.11-2131/td.2015.03.017

[16]

陈爱清, 何宏平, 谭伟, 杨宜坪, 陶奇. X射线衍射旋转撒样法分析氟金云母多型组成与含量. 岩矿测试, 2021, 40(4): 504-511. doi: 10.15898/j.cnki.11-2131/td.202101250014

[17]

梁述廷, 刘玉纯, 刘瑱, 林庆文, 刘志伟. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用. 岩矿测试, 2015, 34(2): 201-206. doi: 10.15898/j.cnki.11-2131/td.2015.02.008

[18]

宋彦军, 李甘雨, 张健, 陶隆凤, 刘云贵, 张璐. 黄绿色明矾石玉的矿物学特征及颜色成因研究. 岩矿测试, 2020, 39(5): 709-719. doi: 10.15898/j.cnki.11-2131/td.202003160036

[19]

王含, 周征宇, 钟倩, 刘瑞婷, 刘琦, 李英博. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征. 岩矿测试, 2016, 35(1): 56-61. doi: 10.15898/j.cnki.11-2131/td.2016.01.010

[20]

鲁麟, 梁婷, 陈郑辉, 王勇, 黑欢, 谢星. 利用X射线粉晶衍射和电感耦合等离子体质谱法研究江西西华山钨矿床中黑钨矿的矿物学特征及指示意义. 岩矿测试, 2015, 34(1): 150-160. doi: 10.15898/j.cnki.11-2131/td.2015.01.019

计量
  • PDF下载量(5)
  • 文章访问量(1013)
  • HTML全文浏览量(36)
  • 被引次数(0)
目录

Figures And Tables

湖南临武黑色石英岩质玉矿物组成特征及成因初探

苗煦, 史淼, 王礼胜