【引用本文】 邓日欣, 罗伟嘉, 韩奕彤, 等. 膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染[J]. 岩矿测试, 2018, 37(5): 541-548. doi: 10.15898/j.cnki.11-2131/td.201801280013
DENG Ri-xin, LUO Wei-jia, HAN Yi-tong, et al. Simultaneous Removal of TCE and Cr(Ⅵ) in Groundwater by Using Bentonite-supported Nanoscale Fe/Ni[J]. Rock and Mineral Analysis, 2018, 37(5): 541-548. doi: 10.15898/j.cnki.11-2131/td.201801280013

膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染

1. 

生物地质与环境地质国家重点实验室, 北京 100083

2. 

中国地质大学(北京)地球科学与资源学院, 北京 100083

3. 

北京建筑大学环境与能源工程学院, 北京 102616

收稿日期: 2018-01-28  修回日期: 2018-04-02  接受日期: 2018-06-11

基金项目: 国家自然科学基金面上基金项目(41472232,41572229)

作者简介: 邓日欣, 硕士研究生, 从事环境地球化学研究。E-mail:drx@cugb.edu.cn

通讯作者: 陈家玮, 教授, 博士生导师, 从事环境地球化学研究。E-mail:chenjiawei@cugb.edu.cn

Simultaneous Removal of TCE and Cr(Ⅵ) in Groundwater by Using Bentonite-supported Nanoscale Fe/Ni

1. 

State Key Laboratory of Biogeology and Environmental Geology, Beijing 100083, China

2. 

School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China

3. 

School of Environment and Energy Engineering, Beijing University of Civil Engineer and Architecture, Beijing 102616, China

Corresponding author: CHEN Jia-wei, chenjiawei@cugb.edu.cn

Received Date: 2018-01-28
Revised Date: 2018-04-02
Accepted Date: 2018-06-11

摘要:纳米零价铁原位注射修复地下水污染是近年发展的新技术,以往研究多侧重于单一目标污染物的去除效果及作用机理,但是地下水多种污染物共存问题不容忽视。本文针对典型污染物三氯乙烯TCE和六价铬Cr(Ⅵ),运用合成的活性高、稳定性强的膨润土负载纳米铁镍(B-Fe/Ni)开展修复实验,研究B-Fe/Ni对TCE和Cr(Ⅵ)共存复合污染的修复效果及其作用机制。通过一步法合成B-Fe/Ni,对TCE和不同浓度Cr(Ⅵ)混合污染的去除进行试验研究,对反应前后的样品B-Fe/Ni进行表征,并跟踪反应过程中TCE和Cr(Ⅵ)的浓度变化。结果表明:B-Fe/Ni同步去除水中TCE和Cr(Ⅵ)快速高效,50 mg/L Cr(Ⅵ)在2 h内能被B-Fe/Ni(1 g/L)完全去除而不受共存TCE(0.1 mmol/L)的影响,然而TCE降解速率会随共存Cr(Ⅵ)的浓度(0、10、30、50 mg/L)增大而降低。经透射电镜-电子能谱及X射线光电子能谱表征验证,这是由于B-Fe/Ni与Cr(Ⅵ)快速反应,生成部分Fe-Cr共沉淀会覆盖B-Fe/Ni表面的活性位点,抑制了TCE的降解,但通过分析TCE降解产物可知,B-Fe/Ni同样能对TCE完全脱氯。因此,B-Fe/Ni适用于地下水复合污染修复,实际应用时需考虑多种污染物共存的相互影响,选择适宜试剂用量和注射方式,这对纳米零价铁修复技术的发展具有重要理论意义和应用参考价值。

关键词: 膨润土负载纳米铁镍, 三氯乙烯, 六价铬, 地下水共存污染, 地下水环境修复

要点

(1) B-Fe/Ni能同步高效去除TCE和Cr(Ⅵ)复合污染物。

(2) Fe-Cr共沉淀快速占据了B-Fe/Ni表面活性位点,抑制了TCE的降解。

(3) B-Fe/Ni降解TCE是完全彻底脱氯的过程。

Simultaneous Removal of TCE and Cr(Ⅵ) in Groundwater by Using Bentonite-supported Nanoscale Fe/Ni

ABSTRACT

BACKGROUND:

The injection of nanoscale zero valent iron particles (nZVI) into groundwater has been recently developed as an in-situ groundwater remediation technology. Most researches focused on how to remove a single type pollutant and the related mechanism. However, cases on the coexisting multiple pollutants in groundwater should not be ignored.

OBJECTIVES:

To synthesize the bentonite-supported nanoscale Fe/Ni bimetals(B-Fe/Ni), in order to remove typical pollutants of trichloroethylene (TCE) and hexavalent chromium[Cr(Ⅵ)] which exhibit high reactivity and are more stable to remediate contaminated water. Also, to assess the performance of B-Fe/Ni on the removal of coexisting TCE and Cr(Ⅵ) and to determine the reaction mechanism.

METHODS:

B-Fe/Ni was synthesized by one-step method and the batch experiments were conducted on the removal of TCE coexisted with different concentration of Cr(Ⅵ) by B-Fe/Ni. The samples of B-Fe/Ni were characterized before and after the reaction, and the contents of TCE and Cr(Ⅵ) were also monitored.

RESULTS:

B-Fe/Ni can efficiently remediate Cr(Ⅵ) and TCE in water. B-Fe/Ni (1 g/L) could completely remove Cr(Ⅵ) (50 mg/L) in 2 h in the presence of coexisting TCE (0.1 mmol/L). However, the degradation rate of TCE by B-Fe/Ni was decreased with increased initial concentration of Cr(Ⅵ) (0, 10, 30, 50 mg/L). According to TEM-EDS and XPS for B-Fe/Ni before and after reaction, it is shown that Fe-Cr co-precipitation from the fast interaction of B-Fe/Ni with Cr(Ⅵ) occupied the reactive sites on the surface of B-Fe/Ni, mitigating the degradation of TCE. According to the final products of TCE degradation, it is shown that TCE was completely dechlorinated.

CONCLUSIONS:

B-Fe/Ni is suitable for the remediation of groundwater combined pollution. In practical applications, it is necessary to consider the mutual influence of multiple pollutants and select the appropriate reagent dosage and injection method. The proposed method has important theoretical significance and application for the development of ZVI repair technology.

KEY WORDS: bentonite-supported nanoscale Fe/Ni bimetals, trichloroethylene, hexavalent chromium, coexisting pollutants in groundwater, groundwater remediation

HIGHLIGHTS

(1) Coexisting TCE and Cr(Ⅵ) were simultaneously and efficiently removed by B-Fe/Ni.

(2) Fast Fe-Cr co-precipitation occupied reactivity sites of B-Fe/Ni and inhibited TCE degradation.

(3) TCE degradation by B-Fe/Ni was completely dechlorinated.

本文参考文献

[1]

Lefevre E, Bossa N, Wiesner M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI):Behavior, transport and impacts on microbial communities[J].Science of the Total Environment, 2016, 565: 889-901. doi: 10.1016/j.scitotenv.2016.02.003

[2]

Gillham R W, O'hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J].Ground Water, 1994, 32(6): 958-967. doi: 10.1111/gwat.1994.32.issue-6

[3]

Magdalena S, Patryk O, Yong S O, et al. Review on nano zer-ovalent iron (nZVI):From synthesis to environmental applications[J].Chemical Engineering Journal, 2016, 287: 618-632. doi: 10.1016/j.cej.2015.11.046

[4]

Zou Y D, Wang X X, Ayub K, et al. Environmental remediation and application of nanoscale zero valent iron and its composites for the removal of heavy metal ions:A review[J].Environmental Science and Technology, 2016, 50: 7290-7304. doi: 10.1021/acs.est.6b01897

[5]

Zhao X, Liu W, Cai Z Q, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J].Water Research, 2016, 100: 235-266.

[6]

Su Y, Adeleye A S, Huang Y X, et al. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles[J].Water Research, 2014, 63: 102-111. doi: 10.1016/j.watres.2014.06.008

[7]

Qian D X, Su Y M, Huang Y X, et al. Simultaneous molybdate (Mo(Ⅵ)) recovery and hazardous ions immobilization via nanoscale zerovalent iron[J].Journal of Hazardous Materials, 2018, 344: 698-706. doi: 10.1016/j.jhazmat.2017.10.036

[8]

Fu F, Han W, Huang C, et al. Removal of Cr(Ⅵ) from wastewater by supported nanoscale zero-valent iron on granular activated carbon[J].Desalination and Water Treatment, 2013, 51(13-15): 2680-2686. doi: 10.1080/19443994.2012.749328

[9]

Pang Z, Yan M, Jia X, et al. Debromination of deca-bromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron:Preparation, characterization and influence factors[J].Journal of Environmental Sciences-China, 2014, 26(2): 483-491. doi: 10.1016/S1001-0742(13)60419-2

[10]

Choi H, Souhail R A, Shirish A, et al. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs[J].Chemistry Materials, 2008, 20: 3649-3655. doi: 10.1021/cm8003613

[11]

Lin C H, Shinh Y H, MacFarlane J, et al. Amphiphilic compounds enhance the dechlorination of pentachloro-phenol with Ni/Fe bimetallic nanoparticles[J].Chemical Engineering Journal, 2015, 262: 59-67. doi: 10.1016/j.cej.2014.09.038

[12]

Zhao D, Cheng J, Cheng J W, et al. One-step synthesis of ben-tonite-supported nanoscale Fe/Ni bimetals for rapid degradation of methyl orange in water[J].Environmental Chemistry Letters, 2014, 12: 461-466. doi: 10.1007/s10311-014-0473-3

[13]

Wang S H, Han Y T, Cao X, et al. Enhanced degradation of trichloroethylene using bentonite-supported nanoscale Fe/Ni and humic acids[J].Environmental Chemistry Letters, 2016, 14: 237-242. doi: 10.1007/s10311-015-0548-9

[14]

Weng X L, Cai W L, Lan R F, et al. Simultaneous remo-val of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles[J].Environmental Pollution, 2018, 236: 562-569. doi: 10.1016/j.envpol.2018.01.100

[15]

樊文井, 成岳, 余淑贞, 等. 流变相法制备包覆型CMC-Fe0及降解水中TCE的研究[J]. 环境科学, 2015, 36(6): 2161-2167.

Fan W J, Cheng Y, Yu S Z, et al. Preparation of coated CMC-Fe0 using rheological phase reaction method and research on degradation of TCE in water[J]. Environmental Science, 2015, 36(6): 2161-2167.

[16]

Rajajayavel S R C, Ghoshal S. Enhanced reductive dech-lorination of trichloroethylene by sulfidated nanoscale zerovalent iron[J].Water Research, 2015, 78: 144-153. doi: 10.1016/j.watres.2015.04.009

[17]

Gu M B, Farooq U, Lu S G, et al. Degradation of trich-loroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments[J].Journal of Hazardous Materials, 2018, 349: 35-44. doi: 10.1016/j.jhazmat.2018.01.037

[18]

王谦, 李延, 孙平, 等. 含铬废水处理技术及研究进展[J]. 环境科学与技术, 2013, 36(A2): 150-156.

Wang Q, Li Y, Sun P, et al. The treatment technology and research progress of hexavalent chromium-containing wastewater[J]. Environmental Science & Technology, 2013, 36(A2): 150-156.

[19]

Fu F L, Ma J, Xie L P, et al. Chromium removal using resin supported nanoscale zero-valent iron[J].Journal of Environmental Management, 2013, 128: 822-827. doi: 10.1016/j.jenvman.2013.06.044

[20]

张保科, 王蕾, 马生凤, 等. 电感耦合等离子体质谱法测定含气天然矿泉水中的铬[J]. 岩矿测试, 2013, 32(4): 568-571. doi: 10.3969/j.issn.0254-5357.2013.04.008

Zhang B K, Wang L, Ma S F, et al. Quantification of Cr in natural sparkling mineral waters by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(4): 568-571. doi: 10.3969/j.issn.0254-5357.2013.04.008

[21]

Mayer K U, Blowes D W, Frind E O, et al. Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater[J].Water Resources Research, 2001, 37(12): 3091-3103. doi: 10.1029/2001WR000234

[22]

李志雄, 韩奕彤, 徐永强, 等. 动态光散射技术原位表征天然有机质存在下纳米零价铁的团聚效应[J]. 岩矿测试, 2016, 35(6): 634-641.

Li Z X, Han Y T, Xu Y Q, et al. In situ measurement of aggregation effect of nanoscale zero-valent iron in the presence of natural organic matter based on the dynamic light scattering technique[J]. Rock and Mineral Analysis, 2016, 35(6): 634-641.

[23]

李晨桦, 陈家玮. 膨润土负载纳米铁去除地下水中六价铬研究[J]. 现代地质, 2012, 26(5): 932-938. doi: 10.3969/j.issn.1000-8527.2012.05.012

Li C H, Chen J W. A study on bentonite-supported nano iron for removal of Cr(Ⅵ) in groundwater[J].Geoscience, 2012, 26(5): 932-938. doi: 10.3969/j.issn.1000-8527.2012.05.012

[24]

Lina S, Zhang X, Chen Z L, et al. Removal of chromium(Ⅵ) from wastewater using bentonite-supported nanoscale zero-valent iron[J].Water Research, 2011, 45: 886-892. doi: 10.1016/j.watres.2010.09.025

[25]

Chen J W, Xiu Z M, Lowry G V, et al. Effect of natural organic matter on toxicity and reactivity of nano-scale zerovalent iron[J].Water Research, 2011, 45(5): 1995-2001. doi: 10.1016/j.watres.2010.11.036

[26]

Li Y, Li X Q, Han D H, et al. New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo-and tetrachlorobisphenol A[J].Chemical Engineering Journal, 2017, 311: 173-182. doi: 10.1016/j.cej.2016.11.084

[27]

Sahu R S, Bindumadhavan K, Doong R, et al. Boron-doped reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene[J].Environmental Science-Nano, 2017, 4(3): 565-576. doi: 10.1039/C6EN00575F

[28]

黄潇月, 王伟, 凌岚, 等. 纳米零价铁与重金属的反应:"核-壳"结构在重金去除中的作用[J]. 化学学报, 2017, 75(6): 529-537.

Huang X Y, Wang W, Ling L, et al. Heavy metal-nZVI reactions:The core-shell structure and applications for heavy metal treatment[J]. Acta Chimica Sinica, 2017, 75(6): 529-537.

[29]

Fu R B, Yang Y P, Xu Z, et al. The removal of chromium(Ⅵ) and lead(Ⅱ) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI)[J].Chemosphere, 2015, 138(3): 726-734.

[30]

李云琴, 许俊鸽, 周海瑞, 等. 包覆型纳米铁的制备及其降解三氯乙烯的性能研究[J]. 环境学报, 2014, 34(12): 2985-2990.

Li Y Q, Xu J G, Zhou H R, et al. Preparation and application of encapsulated nanoscale zero-valent iron in the degradation of trichloroethene[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 2985-2990.

[31]

黄园英, 王倩, 韩子金, 等. 利用扫描电镜技术研究纳米Ni-Fe颗粒对四氯化碳快速脱氯的机理[J]. 岩矿测试, 2015, 34(3): 342-352.

Huang Y Y, Wang Q, Han Z J, et al. Kinetics and mechanism of carbon tetrachloride rapid reduction by nanoscale Ni-Fe particles using scanning electron microscope[J]. Rock and Mineral Analysis, 2015, 34(3): 342-352.

相似文献(共19条)

[1]

朱岩, 戚文彬. 离子色谱法测定六价铬和三价铬. 岩矿测试, 1991, (2): 97-99.

[2]

, 熊英, 林滨兰. 陕西某汞锑矿含铬废水治理前后全铬及六价铬的测定. 岩矿测试, 2002, (3): 230-232.

[3]

赖永忠. 减小水样浊度对废水中六价铬测定结果影响的方法探讨. 岩矿测试, 2012, 31(1): 172-177.

[4]

张杰芳, 闫玉乐, 夏承莉, 焦发存, 张海侠. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬. 岩矿测试, 2017, 36(1): 46-51. doi: 10.15898/j.cnki.11-2131/td.2017.01.007

[5]

李烨, 潘涛, 刘菲, 李森, 郭淼. 四氯乙烯在不同地下水环境的生物共代谢降解. 岩矿测试, 2012, 31(4): 682-688.

[6]

刘菲. 地下水污染监测与修复专栏成果简评. 岩矿测试, 2012, 31(4): 645-646.

[7]

黄国鑫, 高云鹤, Howard Fallowfield, Huade Guan, 刘菲. 联合脱氮法用于硝酸盐污染地下水修复的机理研究. 岩矿测试, 2012, 31(5): 855-862.

[8]

潘金华, 朱鸽, 曹静, 陆琴, 姜荣光, 梅祖明. 上海外环线沿线及其周围土壤和地下水环境质量监测. 岩矿测试, 2006, 25(2): 173-176.

[9]

赵文杰, 马明, 张珂, 李艳香, 侯明兰, 张玉强. 自动电位滴定仪应用于地下水六项指标的连续滴定. 岩矿测试, 2018, 37(5): 580-585. doi: 10.15898/j.cnki.11-2131/td.201711060176

[10]

路国慧, 杨永亮, 刘晓端, 黄毅, 何俊, 徐清, 黄园英. 沈阳地区河水及沿岸地下水中卤代烃的污染特征. 岩矿测试, 2009, 28(4): 316-320.

[11]

李明礼, 柳诚, 王祝, 邬国栋, 夏鹏超. 地下水常见无机污染物研究进展. 岩矿测试, 2010, 29(5): 565-570.

[12]

祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展. 岩矿测试, 2014, 33(1): 67-73.

[13]

左海英, 张琳, 刘菲. 固相萃取-液相色谱/质谱法测定地下水中三嗪类和. 岩矿测试, 2014, 33(1): 96-101.

[14]

黄园英 刘菲 汤鸣皋 孙文超. 纳米镍/铁对四氯乙烯快速脱氯试验. 岩矿测试, 2005, (2): 93-96101.

[15]

刘晓雯. 地下水污染调查中水样无机组分检测质量控制体系 的建立和应用. 岩矿测试, 2010, 29(5): 580-584.

[16]

甘露, 王苏明, 刘菲, 霍志彬. 地下水污染调查样品测试质量远程实时监控管理系统开发. 岩矿测试, 2010, 29(5): 571-574.

[17]

高翔云. 地下水污染调查中水样有机组分分析质量控制. 岩矿测试, 2010, 29(5): 593-596.

[18]

袁建, 王亚平, 许春雪, 代阿芳, 王苏明, 安子怡. 地下水中砷形态标准物质研制. 岩矿测试, 2012, 31(2): 331-337.

[19]

黄毅, 饶竹. 吹扫捕集气相色谱-质谱法测定全国地下水调查样品中挥发性有机污染物. 岩矿测试, 2009, 28(1): 15-20.

计量
  • PDF下载量(5)
  • 文章访问量(68)
  • HTML全文浏览量(8)
  • 被引次数(0)
目录

Figures And Tables

膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染

邓日欣, 罗伟嘉, 韩奕彤, 李志雄, 陈家玮