【引用本文】 马生明, 朱立新, 汤丽玲, 等. 城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估[J]. 岩矿测试, 2020, 39(2): 225-234. doi: 10.15898/j.cnki.11-2131/td.201906060081
MA Sheng-ming, ZHU Li-xin, TANG Li-ling, et al. The Occurrences of Hg and Cd in Soils around Cities and Rivers and Their Ecological Risk Assessment[J]. Rock and Mineral Analysis, 2020, 39(2): 225-234. doi: 10.15898/j.cnki.11-2131/td.201906060081

城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估

1. 

中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000

2. 

中国地质调查局, 北京 100037

收稿日期: 2019-06-06  修回日期: 2019-09-17  接受日期: 2019-10-21

基金项目: 中国地质调查局地质调查项目(DD20190305)

作者简介: 马生明, 博士, 教授级高级工程师, 主要从事勘查地球化学理论方法研究。E-mail:mashengming@igge.cn

The Occurrences of Hg and Cd in Soils around Cities and Rivers and Their Ecological Risk Assessment

1. 

Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

2. 

China Geological Survey, Beijing 100037, China

Received Date: 2019-06-06
Revised Date: 2019-09-17
Accepted Date: 2019-10-21

摘要:受人类活动和自然作用双重影响,土壤中重金属元素异常普遍存在,其中尤以城镇周边的Hg异常和大江河沿岸区域Cd异常最为典型。近年来,通常采用化学分步提取的方式,探讨土壤水溶态、离子交换态、有机态、铁锰氧化物态等形态中Hg、Cd等重金属元素含量的状况,进而分析其生态效应,但对土壤中Hg、Cd等重金属元素的自然存在形式缺乏深入探讨。本文以Hg、Cd两元素为重点,选择我国代表性城市和地区,采集城镇周边Hg异常区和江河沿岸Cd异常区的土壤样品,采用王水溶样原子荧光光谱法(AFS)测定Hg含量,采用盐酸-硝酸-氢氟酸-高氯酸溶样电感耦合等离子体质谱法(ICP-MS)测定Cd含量,同时配合其他相关实验手段,对Hg、Cd的自然存在形式进行解析;并以水稻中Hg、Cd含量为依据对Hg、Cd的生态效应进行了评价。结果表明:长春、南京、漳州和广州等城镇周边土壤Hg异常区Hg主体以硫化物形式存在,而且至少有一部分是以辰砂矿物形式存在,由此决定了土壤中Hg有效态在Hg全量中所占比例较小,土壤中Hg平均含量达到500μg/kg时,水稻籽实中Hg含量超过无公害食品标准的比例为3.4%,生态效应不甚敏感;长江、珠江等江河沿岸区域Cd异常区内Cd主要呈黏土吸附形式存在,由此导致50%左右的Cd以有效态形式存在,在土壤Cd全量中所占比例较大,当土壤中Cd平均含量达到1000μg/kg时,水稻籽实中Cd含量超过无公害食品标准的比例为43%,生态效应敏感。由此揭示出土壤中Hg、Cd等重金属元素生态效应敏感程度更直接地受到自然存在形式的影响。以辰砂矿物形式存在的Hg呈现“惰性”,不容易被农作物吸收,故生态效应不敏感;以黏土矿物吸附形式存在的Cd活动性更强,容易被农作物吸收,故生态效应敏感。Hg、Cd等重金属元素被农作物乃至人体吸收后,其存在形式及其转化特性是评估该元素是否存在生态风险的关键。

关键词: 土壤, 重金属异常, Hg, Cd, 存在形式, 生态效应, 生态风险, 原子荧光光谱法, 电感耦合等离子体质谱法

要点

(1) 城镇周边土壤Hg异常区内Hg至少有一部分以辰砂矿物形式存在。

(2) 江河沿岸区域Cd异常区与黏土吸附有关,有效态含量高达50%。

(3) Hg、Cd等重金属元素存在形式及其转化是生态效应、生态风险评估的关键。

The Occurrences of Hg and Cd in Soils around Cities and Rivers and Their Ecological Risk Assessment

ABSTRACT

BACKGROUND:

The ecological risk of heavy metal anomaly in soil is widespread due to human activities and natural processes. Hg anomaly in urban soil and Cd anomaly along rivers are the typical cases. Recently, the chemical sequential extraction method is widely used for Hg, Cd and other heavy metals to analyze the content of water-soluble fraction, exchangeable fraction, organic bound fraction, and ferric-manganese oxidation in soil. Normally the contents of different heavy metals at the above different chemical extraction forms constitute the basis for ecological effect evaluation. However, no further discussion has been conducted on the natural occurrences of Hg and Cd in soil.

OBJECTIVES:

To provide basis for studies on the key factors of ecological risk assessment.

METHODS:

The content of Hg was determined by atomic fluorescence spectrometry (AFS) after dissolution by aqua regia. The content of Cd was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after digestion by hydrochloric acid-nitric acid-hydrofluoric acid-perchloric acid complexes. The existence forms of Hg were determined by chemical analysis, pyrolytic Hg method, heavy mineral identification, electronic probe and Raman spectrum. The existing forms of Cd were determined by AB-DTPA extraction, X-ray diffractometer and laser particle sizer analyzer. The ecological effects of Hg and Cd were evaluated based on the content of these elements in rice.

RESULTS:

The results show that sulfide was the main natural existence form of Hg in Hg anomaly soil around Changchun, Nanjing, Zhangzhou and Guangzhou. At least a part of Hg was in the form of cinnabar, which resulted in the relatively low percentage of bio-availability content to total content of Hg in soil. The proportion of rice grain with Hg content exceeding the standard of pollution-free food was only 3.4% when the average total content of Hg in soil was up to 500μg/kg. Cd in Cd anomaly area along the Yangtze River and the Pearl River presented as clay adsorption, resulting in about 50% Cd was bio-availability. The ratio of rice grain with Cd content exceeding the standard of pollution-free food was up to 43% when the average content of Cd in soil was 1000μg/kg.

CONCLUSIONS:

This reveals that the sensitivity of the ecological effects of heavy metal elements such as Hg and Cd in soil is more directly affected by naturally occurring forms. Hg in the form of cinnabar is 'inert' and is not easily absorbed by crops, so it is not sensitive to ecological effects. Cd in the form of clay mineral adsorption is more active and easily absorbed by crops, resulting in sensitive ecological effects. After the heavy metal elements such as Hg and Cd are absorbed by crops and even the human, their existence forms and their transformation characteristics are the keys to assess whether there is an ecological risk.

KEY WORDS: soil, heavy metal anomaly, Hg, Cd, existing forms, ecological effect, ecological risk, atomic fluorescence spectrometry, inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) At least a part of Hg in urban soil present as the form of cinnabar.

(2) The Cd anomaly area along the river is related to clay adsorption, and the effective content is as high as 50%.

(3) The existence forms and transformation of Hg and Cd are the keys to ecological effect and risk assessment.

本文参考文献

[1]

黄昌勇. 土壤学[M] . 北京: 中国农业出版社, 2000

Huang C Y. Pedology[M] . Beijing: China Agriculture Press, 2000
[2]

徐友宁, 张江华, 柯海玲, 等. 某金矿区农田土壤重金属污染的人体健康风险[J]. 地质通报, 2014, 33(8): 1239-1252.

Xu Y N, Zhang J H, Ke H L, et al. Human health risk under the condition of farmland soil heavy metals pollution in a gold mining area[J]. Geological Bulletin of China, 2014, 33(8): 1239-1252.

[3]

王喆, 谭科艳, 陈燕芳, 等. 南方某工业区大气总悬浮颗粒物重金属来源解析及其对土壤环境质量的影响[J]. 岩矿测试, 2016, 35(1): 82-89.

Wang Z, Tan K Y, Chen Y F, et al. Origin of heavy metals in total suspended particle and their influence on soil environmental quality in an industrial area of South China[J]. Rock and Mineral Analysis, 2016, 35(1): 82-89.

[4]

刘硕, 吴泉源, 曹学江, 等. 龙口煤矿区土壤重金属污染评价与空间分布特征[J]. 环境科学, 2016, 37(1): 270-279.

Liu S, Wu Q Y, Cao X J, et al. Pollution assessment and spatial distribution characteristics of heavy metals in soils of coal mining area in Longkou City[J]. Environmental Science, 2016, 37(1): 270-279.

[5]

孙鹏, 李艳伟, 张连科, 等. 包头市典型工业区表层土壤中重金属污染状况及其潜在生态风险研究[J]. 岩矿测试, 2016, 35(4): 433-439.

Sun P, Li Y W, Zhang L K, et al. Heavy metal pollution in topsoil from the Baotou industry area and its potential ecological risk evaluation[J]. Rock and Mineral Analysis, 2016, 35(4): 433-439.

[6]

钱贞兵, 孙立剑, 徐升, 等. 淮河流域安徽段土壤重金属元素分布特征研究[J]. 岩矿测试, 2018, 37(2): 193-200.

Qian Z B, Sun L J, Xu S, et al. Distribution characteristics of heavy metals in soils of the Anhui section of the Huaihe River Basin[J]. Rock and Mineral Analysis, 2018, 37(2): 193-200.

[7]

Luo X S, Yu S, Li X D, et al. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong:Implications for assessing the risk to human health[J].Environmental Pollution, 2011, 159: 1317-1326.

[8]

Ghrefat H A, Yusuf N, Jamarh A, et al. Fractionation and risk assessment of heavy metals in soil samples collected along Zerqa River, Jordan[J]. Environmental Earth Science, 2012, 66: 199-208.

[9]

Xiao Q, Zong Y T, Luo S G, et al. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China[J]. Ecotoxicology and Environmental Safety, 2015, 120: 377-385.

[10]

韩承华, 江解增. 重金属污染对蔬菜生产的危害以及缓解重金属污染措施的研究进展[J]. 中国蔬菜, 2014, (4): 7-13.

Han C H, Jiang J Z. Research progress on effects of heavy metal on vegetable production and measures for releasing heavy metal stress[J]. China Vegetables, 2014, (4): 7-13.

[11]

李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 36(3): 1037-1044.

Li Y M, Ma J H, Liu D X, et al. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China[J]. Environmental Science, 2015, 36(3): 1037-1044.

[12]

王玉军, 吴同亮, 周东美, 等. 农田土壤重金属污染评价研究进展[J]. 农业环境科学学报, 2017, 36(12): 2365-2378.

Wang Y J, Wu T L, Zhou D M, et al. Advances in soil heavy metal pollution evaluation based on bibliometrics analysis[J]. Journal of Agro-Environment Science, 2017, 36(12): 2365-2378.

[13]

杨梦丽, 叶明亮, 马友华, 等. 基于重金属有效态的农田土壤重金属污染评价研究[J]. 环境监测管理与技术, 2019, 31(1): 10-13.

Yang M L, Ye M L, Ma Y H, et al. Review on heavy metal pollution evaluation in farmland soil based on bioavailable form of heavy metal[J]. Administration and Technique of Environmental Monitoring, 2019, 31(1): 10-13.

[14]

Massas I, Ehaliotis C, Gerontidis S, et al. Elevated heavy metal concentrations in top soils of an Aegean island town (Greece):Total and available forms, origin and distribution[J]. Environmental Monitoring and Assessment, 2009, 151: 105-116.

[15]

陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272.

Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2): 261-272.

[16]

Zhao F J, Ma Y B, Zhu Y G, et al. Soil contamination in China:Current status and mitigation strategies[J].Environmental Science & Technology, 2015, 49(2): 750-759.

[17]

Vareda J P, Valente A J M, Durães L, et al. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies:A review[J].Journal of Environmental Management, 2019, 246: 101-118.

[18]

王庆仁, 崔岩山, 董艺婷, 等. 植物修复——重金属污染土壤整治有效途径[J]. 生态学报, 2001, 21(2): 326-331.

Wang Q R, Cui Y S, Dong Y T, et al. Phytoremediation an effective approach of heavy metal cleanup from contaminated soil[J]. Acta Ecologica Sinica, 2001, 21(2): 326-331.

[19]

刘珺, 秦善. 层状硅酸盐矿物对重金属污染的防治[J]. 岩石矿物学杂志, 2001, 20(4): 461-466.

Liu J, Qin S. The role of layer silicates in preventing and controlling environmental heavy metal pollution[J]. Acta Petrologica et Mineralogica, 2001, 20(4): 461-466.

[20]

樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013, 22(10): 1727-1736.

Fan T, Ye W L, Chen H Y, et al. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 2013, 22(10): 1727-1736.

[21]

串丽敏, 赵同科, 郑怀国, 等. 土壤重金属污染修复技术研究进展[J]. 环境科学与技术, 2014, 37(1): 213-222.

Chuan L M, Zhao T K, Zheng H G, et al. Research advances in remediation of heavy metal contaminated soils[J]. Environmental Science & Technology, 2014, 37(1): 213-222.

[22]

安婧, 宫晓双, 魏树和, 等. 重金属污染土壤超积累植物修复关键技术的发展[J]. 生态学杂志, 2015, 34(11): 3261-3270.

An J, Gong X S, Wei S H, et al. Research progress on technologies of phytoremediation of heavy metal contaminated soils[J]. Chinese Journal of Ecology, 2015, 34(11): 3261-3270.

[23]

陶雪, 杨琥, 季荣, 等. 固定剂及其在重金属污染土壤修复中的应用[J]. 土壤, 2016, 48(1): 1-11.

Tao X, Yang H, Ji R, et al. Stabilizers and their applications in remediation of heavy metal-contaminated soil[J]. Soils, 2016, 48(1): 1-11.

[24]

崔岩山, 王鹏飞, 琚宜文, 等. 纳米材料在土壤重金属污染修复中的应用[J]. 地球科学, 2018, 43(5): 1737-1745.

Cui Y S, Wang P F, Ju Y W, et al. Process of applications of nanomaterials in soil heavy metal remediation[J]. Earth Science, 2018, 43(5): 1737-1745.

[25]

李韵诗, 冯冲凌, 吴晓芙, 等. 重金属污染土壤植物修复中的微生物功能研究进展[J]. 生态学报, 2015, 35(20): 6881-6890.

Li Y S, Feng C L, Wu X F, et al. A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils[J]. Acta Ecologica Sinica, 2015, 35(20): 6881-6890.

[26]

曾远, 罗立强. 土壤中特异性微生物与重金属相互作用机制与应用研究进展[J]. 岩矿测试, 2017, 36(3): 209-221.

Zeng Y, Luo L Q. Research progress on the application and interaction mechanism between specific microorganisms and heavy metals in soil[J]. Rock and Mineral Analysis, 2017, 36(3): 209-221.

[27]

Zhang J R, Li H Z, Zhou Y Z, et al. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils:A case study in the Pearl River Delta, South China[J].Environmental Pollution, 2018, 235: 710-719.

[28]

Gasparatos D, Mavromati G, Kotsovilis P, et al. Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio Plain:A residential, agricultural, and industrial area in Greece[J].Environmental Earth Science, 2015, 74: 1099-1108.

[29]

Yousaf B, Liu G J, Wang R W, et al. Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas[J]. Environmental Science and Pollution Research, 2016, 23: 22443-22453.

[30]

Pan L B, Wang Y, Ma J, et al. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities[J]. Environmental Science and Pollution Research, 2018, 25: 1055-1069.

[31]

刘旭婷, 李明, 李法松, 等. 四种连续提取方案在重金属污染土壤评价中的比较[J]. 哈尔滨师范大学自然科学学报, 2018, 34(6): 84-89.

Liu X T, Li M, Li F S, et al. Comparison of four sequential extraction procedures used to evaluate trace metal distribution in a contaminated soil[J]. Natural Sciences Journal of Harbin Normal University, 2018, 34(6): 84-89.

[32]

余璨, 陈虎林, 李清清, 等. 河流沉积物重金属形态分析方法研究[J]. 环境研究与监测, 2018, 31(3): 1-8.

Yu C, Chen H L, Li Q Q, et al. Speciation analysis of heavy metals in river sediment[J].Environmental Study and Monitoring, 2018, 31(3): 1-8.

[33]

陈岩, 季宏兵, 朱先芳, 等. 北京市得田沟金矿和崎峰茶金矿周边土壤重金属形态分析和潜在风险评价[J]. 农业环境科学学报, 2012, 31(11): 2142-2151.

Chen Y, Ji H B, Zhu X F, et al. Fraction distribution and risk assessment of heavy metals in soils around the gold mine of Detiangou—Qifengcha, Beijing City, China[J].Journal of Agro-Environment Science, 2012, 31(11): 2142-2151.

[34]

叶宏萌, 李国平, 郑茂钟, 等. 武夷山茶园土壤汞、镉和砷形态及茶叶有效性特征[J]. 热带作物学报, 2016, 37(11): 2094-2099.

Ye H M, Li G P, Zheng M Z, et al. Fraction distribution and tea bioavailability of Hg, Cd, Se in soil from Wuyishan tea garden[J]. Chinese Journal of Tropical Crops, 2016, 37(11): 2094-2099.

[35]

吴昆明, 魏朝俊, 刘云, 等. 土壤活性组分提取剂的研制及初步试验结果[J]. 岩矿测试, 2014, 33(3): 381-389.

Wu K M, Wei C J, Liu Y, et al. Research of soil activated ions extractant and preliminary test results[J]. Rock and Mineral Analysis, 2014, 33(3): 381-389.

[36]

Zhang L Y, Guo S H, Wu B, et al. The source, spatial distribution and risk assessment of heavy metals in soil from the Pearl River Delta based on the National Multi-purpose Regional Geochemical Survey[J].PLoS ONE, 2015, 10(7): 1-12.

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[5]

陈永宁, 丁相玉, 贾十军, 陈富荣, 邢润华, 王晓莺, 陈兴仁. 合肥市土壤重金属元素异常及其生态效应. 岩矿测试, 2007, 26(4): 275-280.

[6]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[7]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[8]

王静, 吴宇峰, 王斌, 张磊, 王鑫, 赵一. 应用毒性淋溶提取法评价天津市某工业用地及周围农田土壤中重金属生态风险. 岩矿测试, 2015, 34(4): 464-470. doi: 10.15898/j.cnki.11-2131/td.2015.04.015

[9]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[10]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[11]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[12]

田志仁, 封雪, 姜晓旭, 李宗超, 李妤, 夏新. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价. 岩矿测试, 2019, 38(5): 479-488. doi: 10.15898/j.cnki.11-2131/td.201811080119

[13]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[14]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[15]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[16]

佘小林. 离子色谱法快速测定土壤中碘量. 岩矿测试, 2005, (2): 145-147.

[17]

李自强, 李小英, 钟琦, 苏文峰, 诸堃. 电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究. 岩矿测试, 2016, 35(1): 37-41. doi: 10.15898/j.cnki.11-2131/td.2016.01.007

[18]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[19]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[20]

鲁照玲, 胡红云, 姚洪. 土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究. 岩矿测试, 2012, 31(2): 241-246.

计量
  • PDF下载量(2)
  • 文章访问量(73)
  • HTML全文浏览量(8)
  • 被引次数(0)
目录

Figures And Tables

城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估

马生明, 朱立新, 汤丽玲, 唐世新