【引用本文】 董学林, 何海洋, 储溱, 等. 封闭酸溶-硅钼蓝比色分光光度法测定地质样品中的硅[J]. 岩矿测试, 2019, 38(5): 575-582. doi: 10.15898/j.cnki.11-2131/td.201708230132
DONG Xue-lin, HE Hai-yang, CHU Qin, et al. Determination of Silica in Geological Samples by Silicon-Molybdenum Blue Spectrophotometry Using High-pressure Acid Digestion[J]. Rock and Mineral Analysis, 2019, 38(5): 575-582. doi: 10.15898/j.cnki.11-2131/td.201708230132

封闭酸溶-硅钼蓝比色分光光度法测定地质样品中的硅

1. 

湖北省地质实验测试中心, 湖北 武汉 430034

2. 

国土资源部稀土稀有稀散矿产重点实验室, 湖北 武汉 430034

3. 

华中科技大学化学与化工学院, 湖北 武汉 430074

收稿日期: 2018-06-23  修回日期: 2018-09-28  接受日期: 2019-07-16

基金项目: 国家重点研发计划项目“重点领域急需化学成分量标准物质研究”(2016YFF0201103);国土资源公益性行业科研专项“典型金属矿选冶样品及小取样量分析方法研究”(201211056)

作者简介: 董学林, 硕士, 工程师, 从事岩矿分析和环境分析工作。E-mail:dongxlin109@126.com

Determination of Silica in Geological Samples by Silicon-Molybdenum Blue Spectrophotometry Using High-pressure Acid Digestion

1. 

Hubei Province Geological Experimental Testing Center, Wuhan 430034, China

2. 

Key Laboratory of Rare Mineral, Ministry of Land and Resources, Wuhan 430034, China

3. 

School of Chemistry Engineering, Huazhong University of Science & Technology, Wuhan 430074, China

Received Date: 2018-06-23
Revised Date: 2018-09-28
Accepted Date: 2019-07-16

摘要:由于聚合态的硅酸无法与钼酸根定量络合,采用硅钼蓝比色分光光度法测定地质样品中的硅,其关键在于如何将固体试样消解制备成溶液且保证硅酸全部以单分子状态存在。本文以氢氟酸-硝酸封闭酸溶消解地质样品,使样品中的硅完全转化为氟硅酸稳定存在于溶液中;再加入硼酸和钼酸铵,使过量的氢氟酸与硼酸生成稳定的BF4-配离子,此步骤代替了蒸干赶除氢氟酸,从而避免了赶酸过程中硅与氟离子转化为气态SiF4而挥发损失,在钼酸铵作用下,硅则充分转变为硅钼杂多酸。在显色过程中通过加入丙酮显著提高了硅钼黄的稳定性,且在一定程度上增加了吸光度,从而改善了硅钼蓝分光光度法测定硅的显色效果。该方法避免了常规碱熔消解样品后在酸化过程中硅酸易聚合、引入大量熔剂造成空白偏高等问题,经岩石、土壤、沉积物和石英岩国家标准物质分析验证,SiO2测试结果准确且重现性好(RSD < 1%,n=10),适用于一般地质样品中硅的快速、准确分析。

关键词: 岩石, 土壤, 沉积物, , 氢氟酸-硝酸酸溶, 密闭消解, 分光光度法

要点

(1) 采用硝酸-氢氟酸封闭酸溶能有效分解地质样品且不造成硅的损失。

(2) 避免了硅酸聚合而造成无法显色的问题。

(3) 加入丙酮显著改善了硅钼黄显色的稳定性。

Determination of Silica in Geological Samples by Silicon-Molybdenum Blue Spectrophotometry Using High-pressure Acid Digestion

ABSTRACT

BACKGROUND:

Polymerized silicic acid cannot be quantitatively complexed with molybdate in geological sample, therefore the silicon is determined by silicon-molybdenum blue colorimetric spectrophotometry. The key of this method is how to digest the solid sample to prepare a solution and ensure that the silicic acid occurs as a single molecule.

OBJECTIVES:

To completely digest the geological samples by high-pressure acid digestion without loss of silicon and polymerization of silicic acid. To improve the stability of silicon-molybdenum yellow by adding a stabilizing agent.

METHODS:

Hydrofluoric acid-nitric acid was used to digest the geological samples, so that the silicon in the sample was completely converted into fluorosilicic acid and was stably present in the solution. Boric acid and ammonium molybdate were added to make the excess hydrofluoric acid and boric acid to form stable BF4- dosing ion, which replaced the evaporation and removal of hydrofluoric acid, thus avoiding the volatilization loss of silicon and fluoride ions converted into gaseous SiF4 during the acid removal process. Under the action of ammonium molybdate, silicon was fully converted into silicon molybdenum heteropolyacids. In the color development process, the stability of silicon-molybdenum yellow was significantly improved by adding acetone, and the absorbance was increased to some extent, thereby improving the color development effect of silicon by silicon-molybdenum blue pectrophotometry.

RESULTS:

The method avoided the problem that the silicic acid was easy to be polymerized during the acidification process when using the conventional alkali fusion digestion. A large amount of flux was introduced to cause a high blank. The validity of the method was evaluated by analyses of rock, soil, sediment and quartzite reference materials. The results of SiO2 were in good agreement with certified values and the relative standard deviation (n=10) was less than 1%.

CONCLUSIONS:

This method is suitable for the rapid and accurate analysis of silica in common geological samples.

KEY WORDS: rock, soil, sediment, silica, HF-HNO3 dissolution, high-pressure digestion, spectrophotometry

HIGHLIGHTS

(1) Geological samples can be digested by nitric acid-hydrofluoric acid under high-pressure without loss of silicon.

(2) Silicon could be completely converted to silicon-molybdenum yellow because the polymerization of silicic acid was avoided.

(3) The stability of silicon-molybdenum yellow was significantly improved by adding acetone.

本文参考文献

[1]

岩石矿物分析编委会. 岩石矿物分析(第四版第一分册)[M] . 北京: 地质出版社, 2011: 8-17.

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis (Fourth Edition:Volume Ⅰ)[M] . Beijing: Geological Publishing House, 2011: 8-17.
[2]

刘建国, 王粤新. 重量法测定岩石矿物中二氧化硅的几种凝聚剂[J]. 岩矿测试, 1994, 13(2): 134-136.

Liu J G, Wang Y X. Coagulating agents for gravimetric determination of silica in rocks and minerals[J]. Rock and Mineral Analysis, 1994, 13(2): 134-136.

[3]

张志刚, 杨淑珍, 黄友芬, 等. 硅酸盐环境标准参考物质中硅的定值方法——氟硅酸钾容量法[J]. 环境科学, 1990, 11(5): 48-52. doi: 10.3321/j.issn:0250-3301.1990.05.008

Zhang Z G, Yang S Z, Huang Y F, et al. Volumetric method for silicon determination in certified reference silicates-potassium silicofluoride volumetry[J].Chinese Journal of Environmental Science, 1990, 11(5): 48-52. doi: 10.3321/j.issn:0250-3301.1990.05.008

[4]

严海, 段家华, 马林泽, 等. 碱熔-氟硅酸钾容量法测定钒钛高炉渣中二氧化硅的含量[J]. 昆明冶金高等专科学校学报, 2014, 30(1): 10-14. doi: 10.3969/j.issn.1009-0479.2014.01.003

Yan H, Duan J H, Ma L Z, et al. Alkali fusion-potassium fluorosilicate volumetric determination of silica content in slag with vanadium and titanium[J].Journal of Kunming Metallurgy College, 2014, 30(1): 10-14. doi: 10.3969/j.issn.1009-0479.2014.01.003

[5]

王艳红, 张瑞峰. 酸溶-氟硅酸钾容量法测定锌铝硅合金中硅[J]. 有色矿冶, 2018, 34(1): 65-67.

Wang Y H, Zhang R F. Determination of silicon in zinc-aluminum-silicon alloy by acid solution-fluosilicate capacity[J]. Non-Ferrous Mining and Metallurgy, 2018, 34(1): 65-67.

[6]

Archer F A, Jr K W S. Spectrophotometric determination of silicon in bismuth borosilicate glass by flow injection[J].Analytica Chimica Acta, 1992, 262(2): 243-251. doi: 10.1016/0003-2670(92)80061-B

[7]

高立红, 周凯红, 王燕霞, 等. 硅钼蓝分光光度法测定氟化稀土中二氧化硅[J]. 冶金分析, 2017, 37(4): 57-61.

Gao L H, Zhou K H, Wang Y X, et al. Determination of silicon dioxide in rare earth fluoride by silicomolybdic blue spectrophotometry[J]. Metallurgical Analysis, 2017, 37(4): 57-61.

[8]

白小叶, 褚晓君. 硅钼蓝分光光度法测定铬铁矿石中的二氧化硅[J]. 有色矿冶, 2016, 32(4): 51-53. doi: 10.3969/j.issn.1007-967X.2016.04.017

Bai X Y, Chu X J. Determination of silicon in chromite by using silicomolybdenum blue spectrophotometry[J].Non-Ferrous Mining and Metallurgy, 2016, 32(4): 51-53. doi: 10.3969/j.issn.1007-967X.2016.04.017

[9]

洪达峰. 硅钼蓝分光光度法测定高岭土中二氧化硅[J]. 冶金分析, 2017, 37(10): 59-64.

Hong D F. Determination of silicon dioxide in kaolin by silicon molybdenum blue spectrophotometry[J]. Metallurgical Analysis, 2017, 37(10): 59-64.

[10]

王琰, 孙洛新, 张帆, 等. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛[J]. 岩矿测试, 2013, 32(5): 719-723. doi: 10.3969/j.issn.0254-5357.2013.05.008

Wang Y, Sun L X, Zhang F, et al. Determination of Si, Al, Fe and Ti in bauxite by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(5): 719-723. doi: 10.3969/j.issn.0254-5357.2013.05.008

[11]

赵良成, 郭秀平, 胡艳巧, 等. 碳酸钠碱熔-电感耦合等离子体发射光谱法测定石墨中的常量元素硅铝钙镁铁钛锰磷[J]. 岩矿测试, 2015, 34(3): 308-313.

Zhao L C, Guo X P, Hu Y Q, et al. Simultaneous determination of major elements Si, Al, Ca, Mg, Fe, Ti, Mn and P in graphite by inductively coupled plasma-optical emission spectrometry with sodium carbonate fusion[J]. Rock and Mineral Analysis, 2015, 34(3): 308-313.

[12]

黄超冠, 蒙义舒, 郭焕花, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30-35.

Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35.

[13]

王梅英, 李鹏程, 李艳华, 等. 蓝晶石矿中氟钠镁铝硅铁钛钾钙元素的X射线荧光光谱分析[J]. 岩矿测试, 2013, 32(6): 909-914. doi: 10.3969/j.issn.0254-5357.2013.06.011

Wang M Y, Li P C, Li Y H, et al. Analysis of F, Na, Mg, Al, Si, Fe, Ti, K, and Ca in cyanite ores by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 909-914. doi: 10.3969/j.issn.0254-5357.2013.06.011

[14]

褚宁, 李卫刚, 蒋晓光, 等. 熔融制样波长色散X射线荧光光谱法测定白云石中钙镁硅铁铝[J]. 岩矿测试, 2014, 33(6): 834-838.

Chu N, Li W G, Jiang X G, et al. Determination of calcium, magnesium, silicon, iron and aluminum in dolomite by wavelength dispersive X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 834-838.

[15]

赵伟, 夏传波, 姜云, 等. X射线荧光光谱法测定透辉石中氧化钙、氧化镁和二氧化硅[J]. 冶金分析, 2018, 38(3): 29-34.

Zhao W, Xia C B, Jiang Y, et al. Determination of calcium oxide, magnesium oxide and silicon dioxide in diopside by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2018, 38(3): 29-34.

[16]

李可及. 熔融制样X射线荧光光谱法测定岩盐中的主量成分[J]. 岩矿测试, 2016, 35(3): 290-294.

Li K J. Determination of major components in rock salt by X-ray fluorescence spectrometry with sample fusion[J]. Rock and Mineral Analysis, 2016, 35(3): 290-294.

[17]

凌进中. 硅酸盐岩石的分解方法[J]. 岩矿测试, 1988, 7(4): 317-323.

Ling J Z. Decomposition of silicates[J]. Rock and Mineral Analysis, 1988, 7(4): 317-323.

[18]

Yu Z, Robinson P, Mcgoldrick P, et al. An evaluation of me-thods for the chemical decomposition of geological materials for trace element determination using ICP-MS[J].Geostandards and Geoanalytical Research, 2001, 25(2-3): 199-217. doi: 10.1111/j.1751-908X.2001.tb00596.x

[19]

李献华, 刘颖, 涂湘林, 等. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比[J]. 地球化学, 2002, 31(3): 289-294. doi: 10.3321/j.issn:0379-1726.2002.03.010

Li X H, Liu Y, Tu X L, et al. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS:A comparative study of sample digestion techniques of alkali fusion and acid dissolution[J].Geochimica, 2002, 31(3): 289-294. doi: 10.3321/j.issn:0379-1726.2002.03.010

[20]

Cotta A J B, Enzweiler J. Classical and new procedures of whole rock dissolution for trace element determination by ICP-MS[J].Geostandards and Geoanalytical Research, 2012, 36(1): 27-50. doi: 10.1111/j.1751-908X.2011.00115.x

[21]

García de Madinabeitia S, Sánchez Lorda M E, Ibarguchi J I G, et al. Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques[J].Analytica Chimica Acta, 2008, 625(2): 117-130. doi: 10.1016/j.aca.2008.07.024

[22]

Okina O, Lyapunov S, Avdosyeva M, et al. An investi-gation of the reliability of HF acid mixtures in the bomb digestion of silicate rocks for the determination of trace elements by ICP-MS[J].Geostandards and Geoanalytical Research, 2016, 40(4): 583-597. doi: 10.1111/ggr.12124

[23]

黎卫亮, 程秀花, 余娟, 等. 高压密闭酸溶-电感耦合等离子体质谱法测定花岗闪长岩中的微量锆[J]. 岩矿测试, 2016, 35(1): 32-36.

Li W L, Cheng X H, Yu J, et al. Determination of trace zirconium in granodiorite by inductively coupled plasma-mass spectrometry with sealed acid digestion at high pressure[J]. Rock and Mineral Analysis, 2016, 35(1): 32-36.

[24]

赵中一,何应律. 岩石矿物分析导论[M] . 武汉: 中国地质大学出版社, 1993

Zhao Z Y,He Y L. Introduction to Rock and Mineral Analysis[M] . Wuhan: China University of Geosciences Press, 1993
[25]

杨朝帅, 周建辉, 孔幸花, 等. 硅钼蓝光度法测定萤石及其精矿中二氧化硅的含量[J]. 冶金分析, 2012, 32(7): 59-62. doi: 10.3969/j.issn.1000-7571.2012.07.013

Yang C S, Zhou J H, Kong X H, et al. Silicon-molybdenum blue spectrophotometric determination of silica in fluorite and its concentrate[J].Metallurgical Analysis, 2012, 32(7): 59-62. doi: 10.3969/j.issn.1000-7571.2012.07.013

[26]

沙德仁. 提高硅钼黄比色溶液稳定性的研究[J]. 玻璃纤维, 2010, (4): 18-28. doi: 10.3969/j.issn.1005-6262.2010.04.005

Sha D R. Study of improving the stability of colorimetric solution of silicon molybdenum yellow[J].Fiber Glass, 2010, (4): 18-28. doi: 10.3969/j.issn.1005-6262.2010.04.005

[27]

Uchida H, Uchida T, Iida C, et al. Determination of major and minor elements in silicates by inductively coupled plasma emission spectrometry[J].Analytica Chimica Acta, 1979, 108: 87-92. doi: 10.1016/S0003-2670(01)93043-0

[28]

俞超, 蒋增辉, 汪永喜, 等. 氢氟酸溶解-电感耦合等离子体原子发射光谱法测定海绵钛中硅、铁、锰及镁[J]. 分析化学, 2013, 41(11): 1782-1783.

Yu C, Jiang Z H, Wang Y X, et al. Determination of Si, Fe, Mn, Mg in sponge titanium dissolved in HF acid by inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2013, 41(11): 1782-1783.

[29]

胡德新, 肖葵, 王向东, 等. 微波消解-电感耦合等离子体发射光谱法测定高碳铬铁中硅锰磷[J]. 岩矿测试, 2014, 33(2): 208-211. doi: 10.3969/j.issn.0254-5357.2014.02.009

Hu D X, Xiao K, Wang X D, et al. Determination of silicon manganese and phosphorus in high carbon-chrome iron by inductively coupled plasma-atomic emission spectrometry after microwave digestion[J]. Rock and Mineral Analysis, 2014, 33(2): 208-211. doi: 10.3969/j.issn.0254-5357.2014.02.009

[30]

张建珍, 王锦荣, 刘家齐, 等. 聚合硅酸解聚-硅钼蓝分光光度法测定矿石中二氧化硅[J]. 冶金分析, 2010, 30(9): 65-69. doi: 10.3969/j.issn.1000-7571.2010.09.014

Zhang J Z, Wang J R, Liu J Q, et al. Determination of silicon dioxide in ore by polymerized silicic acid depolymerization-molybdosilicate blue spectrophoto-metry[J].Metallurgical Analysis, 2010, 30(9): 65-69. doi: 10.3969/j.issn.1000-7571.2010.09.014

[31]

赵玲, 李胜生, 冯永明, 等. 氟化物解聚快速测定铁矿石中二氧化硅[J]. 安徽地质, 2012, 22(4): 305-307. doi: 10.3969/j.issn.1005-6157.2012.04.018

Zhao L, Li S S, Feng Y M, et al. Quick determination of SiO2 in iron ore by fluoride depolymerization[J].Geology of Anhui, 2012, 22(4): 305-307. doi: 10.3969/j.issn.1005-6157.2012.04.018

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[3]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[4]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[5]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[6]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[7]

肖晓辉, 黄晓刚, 陈振, 宋波. 中性浸出-硫氰酸汞-硫酸高铁铵分光光度法测定锌精矿中的氯量. 岩矿测试, 2008, 27(3): 227-229.

[8]

张晓鸣, 乐琳. 流动注射合并带停留光度法快速测定环境水样中化学需氧量. 岩矿测试, 2008, 27(2): 87-90.

[9]

张剑, 胡高伟, 刁少波, 陈强, 岳英杰, 业渝光. 多孔介质中水合物的热物理参数测量. 岩矿测试, 2008, 27(3): 165-168.

[10]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[11]

任冬, 周小琳, 宗有银, 张廷忠. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘. 岩矿测试, 2019, 38(6): 734-740. doi: 10.15898/j.cnki.11-2131/td.201901170009

[12]

杨晓慧, 李海维, 韩权. 4-(5-硝基-2-吡啶偶氮)-1,3-二氨基苯光度法同时测定钴和钯. 岩矿测试, 2008, 27(2): 113-116.

[13]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[14]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[15]

张建梅, 王洪波, 李风. P256强碱性阴离子树脂分离富集-5-Br-PADAP分光光度法测定铀矿石中微量铀结果不确定度评定. 岩矿测试, 2008, 27(3): 215-218.

[16]

刘晔, 第五春荣, 柳小明, 袁洪林. 密闭高温高压溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨. 岩矿测试, 2013, 32(2): 221-228.

[17]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[18]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[19]

陈晔虞. 多元配合物分光光度法测定岩石中的铍. 岩矿测试, 1989, (2): 111-113.

[20]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

计量
  • PDF下载量(21)
  • 文章访问量(219)
  • HTML全文浏览量(18)
  • 被引次数(0)
目录

Figures And Tables

封闭酸溶-硅钼蓝比色分光光度法测定地质样品中的硅

董学林, 何海洋, 储溱, 宋洲