【引用本文】 李泽岩, 黄福杨, 刘丹丹, 等. 海河流域滹沱河冲洪积扇地下水中农药污染及分布特征[J]. 岩矿测试, 2019, 38(2): 186-194. doi: 10.15898/j.cnki.11-2131/td.201808030091
LI Ze-yan, HUANG Fu-yang, LIU Dan-dan, et al. Pollution and Distribution Characteristics of Pesticides in Groundwater in the Alluvial-Pluvial Fan of the Hutuo River, Haihe River Basin[J]. Rock and Mineral Analysis, 2019, 38(2): 186-194. doi: 10.15898/j.cnki.11-2131/td.201808030091

海河流域滹沱河冲洪积扇地下水中农药污染及分布特征

1. 

水资源与环境工程北京市重点实验室, 中国地质大学(北京), 北京 100083

2. 

中国地质调查局水文地质环境地质调查中心, 河北 保定 071051

3. 

黑龙江省地质博物馆, 黑龙江 哈尔滨 150090

收稿日期: 2018-08-03  修回日期: 2018-12-17  接受日期: 2019-01-04

基金项目: 中国地质调查局地质调查项目“地下水水质演化调查指标识别”(DD20160312)

作者简介: 李泽岩, 硕士研究生, 地质工程专业。E-mail:2105160044@cugb.edu.cn

通信作者: 刘菲, 博士, 教授, 从事有机污染监测与地下水污染治理研究工作。E-mail:feiliu@cugb.edu.cn

Pollution and Distribution Characteristics of Pesticides in Groundwater in the Alluvial-Pluvial Fan of the Hutuo River, Haihe River Basin

1. 

School of Water Resources and Environmental Engineering, China University of Geoscience(Beijing), Beijing 100083, China

2. 

Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Baoding 071051, China

3. 

Geological Museum of Heilongjiang Province, Harbin 150090, China

Corresponding author: LIU Fei, feiliu@cugb.edu.cn

Received Date: 2018-08-03
Revised Date: 2018-12-17
Accepted Date: 2019-01-04

摘要:地下水是海河流域滹沱河冲洪积扇重要的饮用水水源,农业种植过程中施用的农药会导致地下水污染,该地区地下水中农药的污染调查工作相对匮乏。为了研究滹沱河冲洪积扇地下水中农药的污染及分布特征,本文利用气相色谱-质谱联用技术分析了30组地下水样品中75种农药组分,用统计学方法对结果进行分析。结果显示:30个采样点中均有农药检出,检测的75种农药中检出40种,有机氯、有机磷、有机氮三类均有检出。检出率最高的为3-羟基呋喃丹(93.3%)、敌杀磷(90.0%)、地茂散(90.0%),30个样品检出浓度之和最大的为呋喃丹(4860.6ng/L)。研究区内三类农药平均检出浓度有机氯(70.8ng/L) < 有机磷(392.7ng/L) < 有机氮(580.9ng/L),这主要与三类农药的使用历程和性质相关:有机氯类农药由于其高毒、难降解等特性在1983年被禁用;21世纪初,相对高效、易降解的有机磷类和有机氮类农药应用广泛。三类农药的空间分布特征为从冲洪积扇顶部到中部,农药含量逐渐减少,这主要受冲洪积扇水文地质特征的影响。研究区内HCHs来源为近期林丹使用或HCHs工业降解,DDTs来源为新DDT源的释放或历史上的使用。研究结果可为我国地下水农药的污染监测和地下水相关标准制定提供数据支撑。

关键词: 农药, 地下水, 滹沱河冲洪积扇, 水文地质条件, 气相色谱-质谱法

要点

(1) 有机氯、有机磷和有机氮农药的使用历程和性质决定了它们在地下水中检出浓度的差异。

(2) 揭示了农药含量空间分布特征受到地下水埋深和包气带岩性的影响。

(3) 发现研究区内HCHs和DDTs均有近期使用和历史使用。

Pollution and Distribution Characteristics of Pesticides in Groundwater in the Alluvial-Pluvial Fan of the Hutuo River, Haihe River Basin

ABSTRACT

BACKGROUND:

Groundwater is the primary drinking water source in the alluvial-pluvial fan of the Hutuo River. Pesticides application during agricultural planting leads to groundwater pollution. The pesticide pollution investigation work of this area in groundwater is relatively scarce.

OBJECTIVES:

To study the pollution and distribution characteristics of pesticides in groundwater collected in the alluvial-pluvial fan of the Hutuo River.

METHODS:

Gas Chromatography-Mass Spectrometry was used to analyze 75 pesticides in 30 groups of groundwater samples, and the results were investigated by statistical methods.

RESULTS:

The results show that pesticides were detected in all 30 sampling sites. 40 of 75 pesticides were detected, which include organochlorine pesticides, organophosphorus pesticides, and organic nitrogen pesticides. The pesticides with the highest detection frequency were 3-hydroxycarburan (93.3%), dioxathion (90.0%) and chloroneb (90.0%). The pesticide with the maximum sum detection concentration of 30 samples was carbofuran (4860.6ng/L). The average detected concentrations of three pesticide types in the study area were 70.8ng/L for organochlorine pesticides, 392.7ng/L for organophosphorus pesticides, and 580.9ng/L for organic nitrogen pesti-cides, which is related to the application history and property of three pesticide types.

CONCLUSIONS:

Organochlorine pesticides were banned in 1983 due to their high toxicity and hard degradation. At the beginning of the 21st century, relatively efficient and easily degradable organophosphorus pesticides and organic nitrogen pesticides developed rapidly. From the top to the middle of the alluvial fan, the concentration of the three pesticide types decreased gradually. The spatial distribution characteristics of pesticides were mainly influenced by the hydrogeological characteristics of the alluvial fan. HCHs in the area were from the recent using of lindan or industrial degradation of HCHs, DDTs were from the release of new DDT or historical ultilization. The research results provide basic data support for groundwater pesticides pollution monitoring and groundwater-related standard formulation in China.

KEY WORDS: pesticides, groundwater, alluvial-pluvial fan of Hutuo River, hydrogeological characteristics, Gas Chromatography-Mass Spectrometry

HIGHLIGHTS

(1) The concentration differences of organochlorine pesticides, organophosphorus pesticides and organic nitrogen pesticides were related to their application history and properties.

(2) The spatial distribution characteristics of pesticides were influenced mainly by the groundwater depth and lithology of the aerated zone.

(3) HCHs and DDTs in the area had two sources of the recent or historical utilization.

本文参考文献

[1]

Zheng S L, Chen B, Qiu X Y, et al. Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China[J].Chemosphere, 2016, 144: 1177-1192. doi: 10.1016/j.chemosphere.2015.09.050

[2]

陈卫平, 彭程伟, 杨阳, 等. 北京市地下水有机氯和有机磷农药健康风险评价[J]. 环境科学, 2018, 39(1): 117-122.

Chen W P, Peng C W, Yang Y, et al. Health risk evaluation of organochlorine and organophosphorous pesticides in groundwater in Beijing[J]. Environmental Science, 2018, 39(1): 117-122.

[3]

Grung M, Yan L, Hua Z, et al. Pesticide levels and envi-ronmental risk in aquatic environments in China-A review[J].Environment International, 2015, 81: 87-97. doi: 10.1016/j.envint.2015.04.013

[4]

王灿灿, 陈旭, 冯剑丰, 等. 有机氯农药在东方白鹳组织里的浓度[J]. 中国环境科学, 2016, 36(9): 2807-2814. doi: 10.3969/j.issn.1000-6923.2016.09.040

Wang C C, Chen X, Feng J F, et al. The concentration of OCPs in the tissue of oriental white stork[J].China Environmental Science, 2016, 36(9): 2807-2814. doi: 10.3969/j.issn.1000-6923.2016.09.040

[5]

Li Y Y, Niu J F, Shen Z Y, et al. Spatial and seasonal distribution of organochlorine pesticides in the sediments of the Yangtze Estuary[J]. Chemosphere, 2014, 114(22): 233-240.

[6]

Rissato S R, Galhiane M S, Ximenes V F, et al. Organo-chlorine pesticides and polychlorinated biphenyls in soil and water samples in the Northeastern part of Sao Paulo State, Brazil[J].Chemosphere, 2006, 65(11): 1949-1958. doi: 10.1016/j.chemosphere.2006.07.011

[7]

Liu J, Qi S H, Yao J, et al. Contamination characteristics of organochlorine pesticides in multimatrix sampling of the Hanjiang River Basin, Southeast China[J].Chemosphere, 2016, 163: 35-43. doi: 10.1016/j.chemosphere.2016.07.040

[8]

王未, 黄从建, 张满成, 等. 我国区域性水体农药污染现状研究分析[J]. 环境保护科学, 2013, 39(5): 5-9. doi: 10.3969/j.issn.1004-6216.2013.05.002

Wang W, Huang C J, Zhang M C, et al. Study on status of regional water pollution by pesticides in China[J].Environmental Protection Science, 2013, 39(5): 5-9. doi: 10.3969/j.issn.1004-6216.2013.05.002

[9]

王建伟, 张彩香, 潘真真, 等. 江汉平原地下水中有机磷农药的分布特征及影响因素[J]. 中国环境科学, 2016, 36(10): 3089-3098. doi: 10.3969/j.issn.1000-6923.2016.10.037

Wang J W, Zhang C X, Pan Z Z, et al. Distribution characteristics and influencing factors of organophosphorus pesticides in Jianghan plain groundwater[J].China Environmental Science, 2016, 36(10): 3089-3098. doi: 10.3969/j.issn.1000-6923.2016.10.037

[10]

Wu C F, Luo Y M, Gui T, et al. Characteristics and potential health hazards of organochlorine pesticides in shallow groundwater of two cities in the Yangtze River Delta[J].CLEAN-Soil, Air, Water, 2014, 42(7): 923-931. doi: 10.1002/clen.v42.7

[11]

Navarrete I A, Tee K A M, Unson J R S, et al. Organo-chlorine pesticide residues in surface water and groundwater along Pampanga River, Philippines[J].Environmental Monitoring and Assessment, 2018, 190(5): 289. doi: 10.1007/s10661-018-6680-9

[12]

Chaza C, Sopheak N, Mariam H, et al. Assessment of pe-sticide contamination in Akkar groundwater, Northern Lebanon[J]. Environmental Science & Pollution Research, 2017, 25(1-4): 1-11.

[13]

刘琰, 乔肖翠, 江秋枫, 等. 滹沱河冲洪积扇地下水硝酸盐含量的空间分布特征及影响因素[J]. 农业环境科学学报, 2016, 35(5): 947-954.

Liu Y, Qiao X C, Jiang Q F, et al. Spatial distribution and influencing factors of nitrate content in groundwater of alluvial-pluvial fan of Hutuo River[J]. Journal of Agro-Environment Science, 2016, 35(5): 947-954.

[14]

史入宇, 崔亚莉, 赵婕, 等. 滹沱河地区地下水适宜水位研究[J]. 水文地质工程地质, 2013, 40(2): 36-41.

Shi R Y, Cui Y L, Zhao J, et al. A study of the suitable groundwater level of the Hutuo River area[J]. Hydrogeology & Engineering Geology, 2013, 40(2): 36-41.

[15]

茹淑华, 张国印, 孙世友, 等. 河北省地下水硝酸盐污染总体状况及时空变异规律[J]. 农业资源与环境学报, 2013, 35(5): 48-52. doi: 10.3969/j.issn.1005-4944.2013.05.011

Ru S H, Zhang G Y, Sun S Y, et al. Status of the contamination and spatial-temporal variations of nitrate in groundwater of Heibei Province, China[J].Journal of Agricultural Resources and Environment, 2013, 35(5): 48-52. doi: 10.3969/j.issn.1005-4944.2013.05.011

[16]

白雪媛.地下水中82种农药测试方法开发与应用[D].北京: 中国地质大学(北京), 2017.

Bai X Y.Development and Application for Test Method of 82 Kinds of Pesticides in Groundwater[D].Beijing: China University of Geoscience (Beijing), 2017.

[17]

贺红武. 有机磷农药产业的现状与发展趋势[J]. 世界农药, 2008, 30(6): 29-33. doi: 10.3969/j.issn.1009-6485.2008.06.005

He H W. Current situation and development trend of organophosphorus pesticide industry[J].World Pesticides, 2008, 30(6): 29-33. doi: 10.3969/j.issn.1009-6485.2008.06.005

[18]

高秋生, 焦立新, 杨柳, 等. 白洋淀典型持久性有机污染物污染特征与风险评估[J]. 环境科学, 2018, 39(4): 1616-1627.

Gao Q S, Jiao L X, Yang L, et al. Occurrence and ecological risk assessment of typical persistent organic pollutants in Baiyangdian Lake[J]. Environmental Science, 2018, 39(4): 1616-1627.

[19]

刘翠翠, 何洁妮, 仇雁翎, 等. 黄浦江水相中有机氯农药的污染特征分析[J]. 环境化学, 2017, 36(4): 849-857.

Liu C C, He J N, Qiu Y L, et al. Pollution status analysis of organochlorine pesticides in Huangpu River water[J]. Environmental Chemistry, 2017, 36(4): 849-857.

[20]

WalkerK , Vallero D A, Lewis R G, et al. Factors influencing the distribution of lindane and other hexa-chlorocy-clohexanes in the environment[J].Environmental Science & Technology, 1999, 33(24): 4373-4378.

[21]

张文静. 三氯杀螨醇生产过程中的DDT环境排放研究[J]. 安全与环境学报, 2012, 12(2): 130-133. doi: 10.3969/j.issn.1009-6094.2012.02.030

Zhang W J. DDT release in the dicofol production process[J].Journal of Safety and Environment, 2012, 12(2): 130-133. doi: 10.3969/j.issn.1009-6094.2012.02.030

[22]

Qiu X H, Zhu T, Yao B, et al. Contribution of dicofol to the current DDT pollution in China[J]. Environmental Science & Technology, 2005, 39(12): 4385-4390.

[23]

Bhalerao T S, Puranik P R. Biodegradation of organochlo-rine pesticide, endosulfan, by a fungal soil isolate, Aspergillus Niger[J].International Biodeterioration & Biodegradation, 2007, 59(4): 315-321.

[24]

Fujii Y, Ito Y, Harada K H, et al. Comparative survey of levels of chlorinated cyclodiene pesticides in breast milk from some cities of China, Korea and Japan[J].Chemosphere, 2012, 89(4): 452-457. doi: 10.1016/j.chemosphere.2012.05.098

相似文献(共20条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[3]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[4]

徐蓉桢, 刘菲, 荆继红, 安子怡, 邹胜章. 典型浅层孔隙水和岩溶水中多环芳烃分布特征. 岩矿测试, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004

[5]

贾静, 杨志鹏. 吹扫捕集-气相色谱/质谱法测定地下水中1,4-二噁烷. 岩矿测试, 2014, 33(4): 556-560.

[6]

李松, 饶竹, 宋淑玲, 田芹, 赵威. 气相色谱-质谱在地下水检测过程中的重要性. 岩矿测试, 2010, 29(5): 518-522.

[7]

李义, 董建芳, 张宇. 地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定. 岩矿测试, 2010, 29(5): 513-517.

[8]

李丽君, 汪寅夫, 王娜, 王海娇. 吹扫捕集-气相色谱/质谱法测定地下水中的挥发性有机物. 岩矿测试, 2010, 29(5): 547-551.

[9]

陶文靖, 黄勤, 李胜生. 顶空进样-气相色谱-质谱法测定地下水中25种挥发性有机污染物. 岩矿测试, 2010, 29(5): 543-546.

[10]

冯丽, 李诚, 张彦, 张喜友. 吹扫捕集/气相色谱-质谱法测定地下水中30种挥发性有机物. 岩矿测试, 2012, 31(6): 1037-1042.

[11]

张永涛, 张莉, 左海英, 桂建业, 李晓亚, 李桂香. 重氮甲烷衍生气相色谱-质谱法检测地下水中17种酸性除草剂. 岩矿测试, 2010, 29(4): 345-349.

[12]

刘美美, 张小辉, 马娅妮, 李雪莹, 陶秋丽. 吹扫捕集-气相色谱-质谱联用法测定地下水中27种挥发性有机物. 岩矿测试, 2012, 31(3): 495-500.

[13]

郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留. 岩矿测试, 2014, 33(3): 406-412.

[14]

宋淑玲, 饶竹. 气相色谱电子捕获法检测地下水中5种残留农药. 岩矿测试, 2011, 30(2): 174-177.

[15]

马晗宇, 刘菲, 刘玉龙. 气相色谱法测定地下水中有机氯农药和多氯联苯. 岩矿测试, 2010, 29(5): 527-530.

[16]

王敏捷, 周姣花, 曹立峰. 气相色谱法测定地下水中15种有机氯农药. 岩矿测试, 2010, 29(5): 628-630.

[17]

高松, 邓银舟, 李玉芹, 刘园园, 张兰英, 刘娜, 庞英明. 闭合超声循环吹扫针捕集动态提取-气相色谱法测定地下水中的4种有机磷农药. 岩矿测试, 2015, 34(4): 480-486. doi: 10.15898/j.cnki.11-2131/td.2015.04.017

[18]

汪瑾彦, 汤 桦, 陈大舟, 吴 雪, 冯 洁, 吴学丽, 李 蕾. 气相色谱-质谱法同时测定河流沉积物中多环芳烃和有机氯农药. 岩矿测试, 2010, 29(3): 225-230.

[19]

李俊, 肖雅雯, 王震, 赵为武. 加速溶剂萃取-气相色谱/质谱法同时测定土壤中拟除虫菊酯类等18种农药残留. 岩矿测试, 2011, 30(5): 590-595.

[20]

左海英, 张琳, 刘菲. 固相萃取-液相色谱/质谱法测定地下水中三嗪类和. 岩矿测试, 2014, 33(1): 96-101.

计量
  • PDF下载量(10)
  • 文章访问量(86)
  • HTML全文浏览量(13)
  • 被引次数(0)
目录

Figures And Tables

海河流域滹沱河冲洪积扇地下水中农药污染及分布特征

李泽岩, 黄福杨, 刘丹丹, 刘艳君, 刘菲