【引用本文】 王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609-619. doi: 10.15898/j.cnki.11-2131/td.201903010029
WANG Hui, WANG Fang-yue, GUAN Bing-ting, et al. Effect of Laser Energy Density on Data Quality during LA-ICP-MS Measurement[J]. Rock and Mineral Analysis, 2019, 38(6): 609-619. doi: 10.15898/j.cnki.11-2131/td.201903010029

激光能量密度对LA-ICP-MS分析数据质量的影响研究

1. 

岩石圈演化国家重点实验室, 中国科学院地质与地球物理研究所, 北京 100029

2. 

合肥工业大学资源与环境工程学院, 安徽 合肥 230009

3. 

中国科学院大学, 北京 100049

4. 

矿床成因与勘查技术研究中心, 合肥工业大学, 安徽 合肥 230009

5. 

云南金长江矿业有限公司, 广东 肇庆 526300

6. 

中国科学院广州地球化学研究所, 广东 广州 510640

收稿日期: 2019-03-01  修回日期: 2019-05-24  接受日期: 2019-07-16

基金项目: 国家重点研发计划"深地资源勘查开采"重点专项(2016YFC0600404,2016YFC0600206);国家自然科学基金项目(41873034,41673021);中央科研基本业务费项目(PA2018GDQT0020);合肥工业大学国家级大学生创新创业训练计划项目(201610359059)

作者简介: 王辉, 硕士研究生, 地球化学专业。E-mail:wanghui187@mails.ucas.ac.cn

通信作者: 汪方跃, 博士, 副教授, 主要从事LA-ICP-MS和岩石地球化学研究。E-mail:fywang@hfut.edu.cn

Effect of Laser Energy Density on Data Quality during LA-ICP-MS Measurement

1. 

State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

3. 

University of Chinese Academy of Science, Beijing 100049, China

4. 

Ore Deposit and Exploration Centre, Hefei University of Technology, Hefei 230009, China

5. 

Yunnan Jinchangjiang Mine Industry Co., LTD, Zhaoqing 526300, China

6. 

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

Corresponding author: WANG Fang-yue, fywang@hfut.edu.cn

Received Date: 2019-03-01
Revised Date: 2019-05-24
Accepted Date: 2019-07-16

摘要:LA-ICP-MS分析矿物元素含量时激光能量密度会影响样品的剥蚀速率,从而影响测试过程的信号强度。激光能量密度变化对测试数据精确度的影响,以及不同天然矿物对激光能量密度的响应尚需进一步明确。本文测定了不同莫氏硬度天然矿物可稳定剥蚀的最小激光能量密度,评估了193nm ArF准分子激光系统中能量密度对地质标准样品(NIST SRM614、USGS BCR-2G、USGS GSC-1G)和天然矿物测试数据质量的影响。研究结果表明:①稳定剥蚀石英和萤石所需的最小激光能量密度为4~5J/cm2,低于前人的报道值(10J/cm2),而稳定剥蚀其他矿物(如滑石、磷灰石、刚玉等)所需的最小能量密度一般在1~2J/cm2;②不同激光能量密度剥蚀条件下,标准样品中大部分微量元素测试结果与推荐值的相对误差小于20%,相对标准偏差(RSD)小于10%,而天然矿物中含量>1μg/g的大部分微量元素测试数据的RSD小于20%;③在一定范围内,激光能量密度越大,数据平均相对误差越小,整体质量更好。

关键词: LA-ICP-MS, 激光能量密度, 标准样品, 天然矿物, 数据质量

要点

(1) 测试了LA-ICP-MS稳定剥蚀不同莫氏硬度矿物的最小激光能量密度值。

(2) 分析了不同激光能量密度对标准样品和天然矿物测试数据质量的影响。

(3) 研究结果显示一定范围内激光能量密度越大,数据平均相对误差越小。

Effect of Laser Energy Density on Data Quality during LA-ICP-MS Measurement

ABSTRACT

BACKGROUND:

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a frequent instrument for the analysis of trace element content. When LA-ICP-MS is used to analyze the element content of minerals, the laser energy density will affect the denudation rate of the sample and thus affect the signal intensity during the analysis.

OBJECTIVES:

To further clarify the impact of laser energy density changes on the quality of test data and the response of different natural minerals to laser energy density.

METHODS:

The element content data of standard samples and nature minerals with different Mohs hardness under different laser energy densities were determined using LA-ICP-MS. Then authors analyzed the relative error (RE) between the test data and the reference values of the standard samples, average of the relative error of elements with RE within the limits of -20%-10% in the same standard sample, and the relative standard deviation of the standard samples and nature minerals test results to evaluate the effect of laser energy density on the test results.

RESULTS:

The minimum laser energy density required to stabilize ablated quartz and fluorite was 4-5J/cm2, which was lower than the previously reported value (10J/cm2), whereas stable denudation of other minerals such as talc, apatite, and corundum require the minimum energy density of generally 1-2J/cm2. Under the different condition of laser energy density, the relative error of most trace elements in standard samples between analytical results and recommended values was less than 20% and the relative standard deviation was less than 10%. The relative standard deviation of most trace element test data was less than 20% for natural minerals with most element contents >1μg/g. Within a certain range, the greater the laser energy density, the smaller the average relative error of the data, and the better the overall quality.

CONCLUSIONS:

Quartz and fluorite require higher laser energy density for stable ablation than other minerals. Within the appropriate range, laser energy density has little effect on the quality of the individual element data, but it affects the overall quality of the data.

KEY WORDS: LA-ICP-MS, laser energy density, standard samples, natural minerals, data quality

HIGHLIGHTS

(1) The minimum laser energy density for stable denudating minerals of different Mohs hardness was determined during LA-ICP-MS measurement.

(2) The effects of various laser energy densities on the data quality for standard samples and natural minerals were evaluated.

(3) The greater the laser energy density in the appropriate range, the smaller the average relative error of the data.

本文参考文献

[1]

Durrant S F. Feasibility of improvement in analytical per-formance in laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS) by addition of nitrogen to the argon plasma[J].Fresenius Journal of Analytical Chemistry, 1994, 349(10-11): 768-771. doi: 10.1007/BF00325655

[2]

Kozono S, Haraguchi H. Determination of ultratrace im-purity elements in high purity niobium materials by on-line matrix separation and direct injection/inductively coupled plasma mass spectrometry[J].Talanta, 2007, 72(5): 1791-1799. doi: 10.1016/j.talanta.2007.02.021

[3]

Zhang W, Hu Z, Liu Y, et al. Improved in situ Sr isotopic analysis by a 257nm femtosecond laser in combination with the addition of nitrogen for geological minerals[J]. Chemical Geology, 2018, 479(none): 10-21.

[4]

Gray A L. Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry[J].Analyst, 1985, 110(5): 551-556. doi: 10.1039/an9851000551

[5]

Miliszkiewicz N, Walas S, Tobiasz A, et al. Current approaches to calibration of LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2): 327-338. doi: 10.1039/C4JA00325J

[6]

袁洪林, 高山, 戴梦宁, 等. 流体包裹体中Sr同位素的激光剥蚀多接收等离子体质谱原位微区分析[J]. 矿物岩石地球化学通报, 2009, 28(4): 313-317. doi: 10.3969/j.issn.1007-2802.2009.04.001

Yuan H L, Gao S, Dai M N, et al. In situ strontium isotope analysis of fluid inclusion using LA-MC-ICPMS[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(4): 313-317. doi: 10.3969/j.issn.1007-2802.2009.04.001

[7]

Eggins S M. Laser ablation ICP-MS analysis of geo-logical materials prepared as lithium borate glasses[J].Geostandards Newsletter, 2003, 27(2): 147-162. doi: 10.1111/j.1751-908X.2003.tb00642.x

[8]

Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4

[9]

Garcia de Madinabeitia S, Sanchez Lorda M E, Ibarguchi J I, et al. Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques[J].Analytica Chimica Acta, 2008, 625(2): 117-130. doi: 10.1016/j.aca.2008.07.024

[10]

Upadhyay N, Majestic B J, Prapaipong P, et al. Evalua-tion of polyurethane foam, polypropylene, quartz fiber, and cellulose substrates for multi-element analysis of atmospheric particulate matter by ICP-MS[J]. Analytical & Bioanalytical Chemistry, 2009, 394(1): 255-266.

[11]

汪奇, 张文, 王立云, 等. 激光剥蚀-电感耦合等离子体质谱测定植物样品中的元素[J]. 光谱学与光谱分析, 2011, 31(12): 3379-3383. doi: 10.3964/j.issn.1000-0593(2011)12-3379-05

Wang Q, Zhang W, Wang L Y, et al. Quantitative determination of elements in plant samples by laser ablation inductively coupled plasma mass spectrometry[J].Spectroscopy and Spectral Analysis, 2011, 31(12): 3379-3383. doi: 10.3964/j.issn.1000-0593(2011)12-3379-05

[12]

Löhr K, Traub H, Wanka A J, et al. Quantification of metals in single cells by LA-ICP-MS:Comparison of single spot analysis and imaging[J].Journal of Analytical Atomic Spectrometry, 2018, 33(9): 1579-1587. doi: 10.1039/C8JA00191J

[13]

Ren H D, Wang T, Zhang L, et al. Ages, sources and tectonic settings of the triassic igneous rocks in the easternmost segment of the East Kunlun Orogen, Central China[J].Acta Geologica Sinica (English Edition), 2016, 90(2): 641-668. doi: 10.1111/1755-6724.12696

[14]

Li W, Liu Y Q, Dong Y P, et al. The geochemical cha-racteristics, geochronology and tectonic significance of the Carboniferous volcanic rocks of the Santanghu area in Northeastern Xinjiang, China[J].Science China (Earth Sciences), 2013, 56(8): 1318-1333. doi: 10.1007/s11430-012-4483-3

[15]

Xiao X, Zhou T F, Fan Y, et al. LA-ICP-MS in situ trace elements and FE-SEM analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui and its constraints on the ore genesis[J]. Acta Petrologica Sinica, 2016, 32(2): 369-376.

[16]

Zhang L Y, Li N, Prelevic D, et al. The research status of olivine trace elements in-situ analysis and perspectives of its application[J]. Acta Petrologica Sinica, 2016, 32(6): 1877-1890.

[17]

Pettke T, Oberli F, Audetat A, et al. Recent develop-ments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J].Ore Geology Reviews, 2012, 44: 10-38. doi: 10.1016/j.oregeorev.2011.11.001

[18]

Li C Y, Jiang Y H, Zhao Y, et al. Trace element analyses of fluid inclusions using laser ablation ICP-MS[J].Solid Earth Sciences, 2018, 3(1): 8-15. doi: 10.1016/j.sesci.2017.12.001

[19]

Fusswinkel T, Giehl C, Beermann O, et al. Combined LA-ICP-MS microanalysis of iodine, bromine and chlorine in fluid inclusions[J].Journal of Analytical Atomic Spectrometry, 2018, 33(5): 768-783. doi: 10.1039/C7JA00415J

[20]

范晨子, 詹秀春, 曾普胜, 等. 白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究[J]. 岩矿测试, 2016, 34(6): 609-616.

Fan C Z, Zhan X C, Zeng P S, et al. Multi-element cont-ent analysis of rare earth fluorocarbonates from Bayan Obo deposit by laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 34(6): 609-616.

[21]

Drost K, Chew D, Petrus J A, et al. An image mapping approach to U-Pb LA-ICP-MS carbonate dating and applications to direct dating of carbonate sedimentation[J].Geochemistry, Geophysics, Geosystems, 2018, 19(12): 4631-4648. doi: 10.1029/2018GC007850

[22]

Peng S, Hu Q, Ewing R P, et al. Quantitative 3-D elemental mapping by LA-ICP-MS of a basaltic clast from the Hanford 300 Area, Washington, USA[J]. Environmental Science & Technology, 2012, 46(4): 2025-2032.

[23]

Norman M D, Pearson N J, Sharma A, et al. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS:Instrumental operating conditions and calibration values of NIST glasses[J].Geostandards Newsletter, 1996, 20(2): 247-261. doi: 10.1111/j.1751-908X.1996.tb00186.x

[24]

周文喜, 王华建, 付勇, 等. 基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究[J]. 岩矿测试, 2017, 36(2): 97-106.

Zhou W X, Wang H J, Fu Y, et al. Study on the formation mechanism of phosphate nodules in the Early Cambrian period using LA-ICP-MS multi-element imaging technology[J]. Rock and Mineral Analysis, 2017, 36(2): 97-106.

[25]

Chen Y T, Naessens K, Baets R, et al. Ablation of tran-sparent materials using excimer lasers for photonic applications[J].Optical Review, 2005, 12(6): 427-441. doi: 10.1007/s10043-005-0427-x

[26]

何飞, 程亚. 飞秒激光微加工:激光精密加工领域的新前沿[J]. 中国激光, 2007, 34(5): 595-622. doi: 10.3321/j.issn:0258-7025.2007.05.001

He F, Cheng Y. Femtosecond laser micromachining:Frontier in laser precision micromachining[J].Chinese Journal of Laser, 2007, 34(5): 595-622. doi: 10.3321/j.issn:0258-7025.2007.05.001

[27]

罗彦, 胡圣虹, 刘勇胜, 等. 激光剥蚀电感耦合等离子体质谱微区分析新进展[J]. 分析化学, 2001, 29(11): 1345-1352. doi: 10.3321/j.issn:0253-3820.2001.11.026

Luo Y, Hu S H, Liu Y S, et al. Recent trends in laser ablation inductively coupled plasma-mass spectrometric microanalysis[J].Chinese Journal of Analytical Chemistry, 2001, 29(11): 1345-1352. doi: 10.3321/j.issn:0253-3820.2001.11.026

[28]

Günther D, Heinrich C A. Comparison of the ablation behaviour of 266nm Nd:YAG and 193nm ArF excimer lasers for LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1369-1374. doi: 10.1039/A901649J

[29]

Günther D, Frischknecht R, Heinrich C A, et al. Capabi-lities of an argon fluoride 193nm excimer laser for laser ablation inductively coupled plasma mass spectometry microanalysis of geological materials[J].Journal of Analytical Atomic Spectrometry, 1997, 12(9): 939-944. doi: 10.1039/A701423F

[30]

Güillong M, Horn I, Günther D, et al. A comparison of 266nm, 213nm and 193nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2003, 18(10): 1224-1230. doi: 10.1039/B305434A

[31]

Gaboardi M, Humayun M. Elemental fractionation during LA-ICP-MS analysis of silicate glasses:Implications for matrix-independent standardization[J].Journal of Analytical Atomic Spectrometry, 2009, 24(9): 1188-1197. doi: 10.1039/b900876d

[32]

Russo R E, Mao X L, Borisov O V, et al. Influence of wavelength on fractionation in laser ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2000, 15(9): 1115-1120. doi: 10.1039/b004243i

[33]

柯于球, 张路远, 郑洪涛, 等. 硫化物矿物LA-ICP-MS微区分析激光剥蚀行为研究[J]. 冶金分析, 2010, 30(Supplement): 417-419.

Ke Y Q, Zhang L Y, Zheng H T, et al. An investigation on laser ablation behavior of sulfide mineral in LA-ICP-MS microanalysis[J]. Metallurgical Analysis, 2010, 30(Supplement): 417-419.

[34]

Horn I, Günther D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols:Implications for LA-ICP-MS[J].Applied Surface Science, 2003, 207(1-4): 144-157. doi: 10.1016/S0169-4332(02)01324-7

[35]

Garcia C C, Lindner H, Niemax K, et al. Laser ablation induc-tively coupled plasma mass spectrometry-Current shortcomings, practical suggestions for improving performance, and experiments to guide future development[J].Journal of Analytical Atomic Spectrometry, 2009, 24(1): 14-26. doi: 10.1039/B813124B

[36]

吴石头, 许春雪, KlausS, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451-459.

Wu S T, Xu C X, Klaus S, et al. Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459.

[37]

王辉, 汪方跃, 盛兆秋, 等. LA-ICP-MS分析中不同莫氏硬度矿物激光剥蚀行为及剥蚀速率研究[J]. 岩石矿物学杂志, 2019, 38(1): 113-120. doi: 10.3969/j.issn.1000-6524.2019.01.010

Wang H, Wang F Y, Sheng Z Q, et al. The laser ablation behavior and rate of minerals with different Mohs hardnesses in LA-ICP-MS analysis[J].Acta Petrologica et Mineralogica, 2019, 38(1): 113-120. doi: 10.3969/j.issn.1000-6524.2019.01.010

[38]

吴石头, 王亚平, 许春雪, 等. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 2015, 34(5): 503-511.

Wu S T, Wang Y P, Xu C X, et al. Research progress on reference materials for in situ elemental analysis by laser ablation-inductively coupled plasma-mass spectro-metry[J]. Rock and Mineral Analysis, 2015, 34(5): 503-511.

[39]

Marcel G, Kathrin H, Eric R, et al. Preliminary charac-terisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193nm, 213nm and 266nm wavelengths[J].Geostandards and Geoanalytical Research, 2005, 29(3): 315-331. doi: 10.1111/j.1751-908X.2005.tb00903.x

[40]

Regnery J, Stoll B, Jochum K P, et al. High-resolution LA-ICP-MS for accurate determination of low abundances of K, Sc and other trace elements in geological samples[J].Geostandards and Geoanalytical Research, 2010, 34(1): 19-38. doi: 10.1111/j.1751-908X.2009.00025.x

[41]

Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[42]

Bulska E, Wagner B. Quantitative aspects of inductively coupled plasma mass spectrometry[J].Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2016, 374(2079): 20150369. doi: 10.1098/rsta.2015.0369

[43]

宁思远, 汪方跃, 薛维栋, 等. 长江中下游铜陵地区宝山岩体地球化学研究[J]. 地球化学, 2017, 46(5): 397-412. doi: 10.3969/j.issn.0379-1726.2017.05.001

Ning S Y, Wang F Y, Xue W D, et al. Geochemistry of the Baoshan Pluton in the Tongling region of the Lower Yangtze River Belt[J].Geochemical, 2017, 46(5): 397-412. doi: 10.3969/j.issn.0379-1726.2017.05.001

[44]

汪方跃, 葛粲, 宁思远, 等. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422-3436.

Wang F Y, Ge C, Ning S Y, et al. A new approach to LA-ICP-MS mapping and application in geology[J]. Acta Petrologica Sinica, 2017, 33(11): 3422-3436.

[45]

徐鸿志, 靳兰兰, 李爱荣, 等. 激光剥蚀等离子体质谱分析中激光剥蚀参数对信号响应的影响[J]. 岩矿测试, 2005, 24(3): 171-175. doi: 10.3969/j.issn.0254-5357.2005.03.003

Xu H Z, Jin L L, Li A R, et al. The effects of laser ablation operating parameters on signal response in LA-ICP-MS microanalysis[J]. Rock and Mineral Analysis, 2005, 24(3): 171-175. doi: 10.3969/j.issn.0254-5357.2005.03.003

[46]

Russo R E, Mao X L, Liu C, et al. Laser assisted plasma spectrochemistry:Laser ablation[J].Journal of Analytical Atomic Spectrometry, 2004, 19(9): 1084-1089. doi: 10.1039/b403368j

[47]

陈玉红, 王海舟. 激光剥蚀-电感耦合等离子体质谱法中元素分馏效应的影响因素及其评价[J]. 冶金分析, 2008, 28(8): 1-6. doi: 10.3969/j.issn.1000-7571.2008.08.001

Chen Y H, Wang H Z. Influence factors and evaluation of elemental fractionation in laser ablation inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2008, 28(8): 1-6. doi: 10.3969/j.issn.1000-7571.2008.08.001

[48]

Nadoll P, Koenig A E. LA-ICP-MS of magnetite:Methods and reference materials[J].Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1872-1877. doi: 10.1039/c1ja10105f

[49]

Kuhn H R, Günther D. Laser ablation-ICP-MS:Particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass[J].Journal of Analytical Atomic Spectrometry, 2004, 19(9): 1158-1164. doi: 10.1039/B404729J

[50]

Eggins S M, Shelley J M G. Compositional heterogeneity in NIST SRM610-617 glasses[J].Geostandards Newsletter, 2002, 26(3): 269-286. doi: 10.1111/j.1751-908X.2002.tb00634.x

[51]

Pearce N J, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM610 and NIST SRM612 glass reference materials[J].Geostandards Newsletter, 1997, 21(1): 115-144. doi: 10.1111/j.1751-908X.1997.tb00538.x

[52]

Jochum K P, Weis U, Stoll B, et al. Determination of reference values for NIST SRM610-617 glasses following ISO guidelines[J].Geostandards and Geoanalytical Research, 2011, 35(4): 397-429. doi: 10.1111/j.1751-908X.2011.00120.x

[53]

Rocholl A B, Simon K, Jochum K P, et al. Chemical characterisation of NIST silicate glass certified reference material SRM610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE[J].Geostandards Newsletter, 1997, 21(1): 101-114. doi: 10.1111/j.1751-908X.1997.tb00537.x

[54]

Jochum K P, Stoll B, Herwig K, et al. MPI-DING re-ference glasses for in situ microanalysis:New reference values for element concentrations and isotope ratios[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2): 1-44.

[55]

周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350-359.

Zhou L L, Wei J Q, Wang F, et al. Optimization of the working parameters of LA-ICP-MS and its application to zrcon U-Pb dating[J]. Rock and Mineral Analysis, 2017, 36(4): 350-359.

[56]

Bao Z, Zhang H, Yuan H, et al. Flux-free fusion technique using a boron nitride vessel and rapid acid digestion for determination of trace elements by ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2016, 31(11): 2261-2271. doi: 10.1039/C6JA00269B

[57]

He Z, Huang F, Yu H, et al. A flux-free fusion technique for rapid determination of major and trace elements in slicate rocks by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2016, 40(1): 5-21. doi: 10.1111/j.1751-908X.2015.00352.x

[58]

Chen L, Liu Y, Hu Z, et al. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J].Chemical Geology, 2011, 284(3-4): 283-295. doi: 10.1016/j.chemgeo.2011.03.007

[59]

Hou Z H, Wang C X. Determination of 35 trace elements in geological samples by inductively coupled plasma mass spectrometry[J]. Journal of University of Science and Technology of China, 2007, 37(8): 940-944.

[60]

Wagner B, Nowak A, Bulska E, et al. Complementary analysis of historical glass by scanning electron microscopy with energy dispersive X-ray spectroscopy and laser ablation inductively coupled plasma mass spectrometry[J]. Microchimica Acta, 2007, 162(3-4): 415-424.

相似文献(共15条)

[1]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[2]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[3]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[4]

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

[5]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[6]

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

[7]

张伟盟, 严杰, 钟福军, 潘家永, 刘文泉, 赖静, 周堂波. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究. 岩矿测试, 2019, 38(4): 449-460. doi: 10.15898/j.cnki.11-2131/td.201901160007

[8]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[9]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[10]

罗立强, 安庆骧. 黄金标准样品的X—射线荧光光谱定量分析. 岩矿测试, 1993, (3): 234-237.

[11]

田衎, 杨珺, 孙自杰, 周裕敏, 邢书才, 封跃鹏. 矿区污染场地土壤重金属元素分析标准样品的研制. 岩矿测试, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012

[12]

房丽萍, 吴忠祥, 王伟, 宋祥梅, 封跃鹏, 田衎, 王晓燕. 河流沉积物多环芳烃标准样品的制备与定值. 岩矿测试, 2013, 32(5): 767-774.

[13]

田衎, 吴忠祥, 张萍, 邢小茹. 松花江哈尔滨段水系沉积物中无机元素环境标准样品的研制. 岩矿测试, 2012, 31(2): 338-341.

[14]

吴石头, 王亚平, 詹秀春, AndreasKronz, KlausSimon, 许春雪, 田欢. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究. 岩矿测试, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007

[15]

范晨子, 詹秀春, 曾普胜, 胡明月. 白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究. 岩矿测试, 2015, 34(6): 609-616. doi: 10.15898/j.cnki.11-2131/td.2015.06.002

计量
  • PDF下载量(37)
  • 文章访问量(186)
  • HTML全文浏览量(24)
  • 被引次数(0)
目录

Figures And Tables

激光能量密度对LA-ICP-MS分析数据质量的影响研究

王辉, 汪方跃, 关炳庭, 盛兆秋