【引用本文】 马生凤, 赵文博, 朱云, 等. 碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素[J]. 岩矿测试, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047
MA Sheng-feng, ZHAO Wen-bo, ZHU Yun, et al. Determination of Symbiotic and Associated Elements in Tin Ore by ICP-MS Combined with Pressurized Acid Digestion and Detinning Process[J]. Rock and Mineral Analysis, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047

碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素

国家地质实验测试中心, 北京 100037

收稿日期: 2018-04-19  修回日期: 2018-06-12  接受日期: 2018-08-10

基金项目: 国家重点研发计划“国家质量基础的共性技术研究与应用”重点专项课题(2016YFF0201604-3)

作者简介: 马生凤, 副研究员, 从事电感耦合等离子体发射光谱/质谱分析测试方法研究。E-mail:mashf@cags.ac.cn

Determination of Symbiotic and Associated Elements in Tin Ore by ICP-MS Combined with Pressurized Acid Digestion and Detinning Process

National Research Center for Geoanalysis, Beijing 100037, China

Received Date: 2018-04-19
Revised Date: 2018-06-12
Accepted Date: 2018-08-10

摘要:锡矿石是难分解的矿物,主要存在形式是锡石(SnO2),且共生和伴生元素多,常用的酸溶方法几乎不能溶解SnO2,从而给锡矿石中的共生与伴生元素的准确测定带来困难。本文基于碘化氨在较低温度下熔融可产生无水状态的碘化氢,利用碘化氢的酸性和氨的还原性分解SnO2,使Sn呈SnI4升华分离的原理处理锡矿石。实验中以高纯铂丝作催化剂,加入碘化铵在450℃的马弗炉中分解锡矿石30 min,使得Sn以SnI4形式挥发,除锡率达到98%以上,再用2 mL氢氟酸和1 mL硝酸封闭溶解残渣,电感耦合等离子体质谱测定钴镍铜铌钽钍铀等24个共生和伴生元素。元素检出限在0.001~2.9 μg/g之间,90%以上元素的相对标准偏差(RSD)小于5%,相对误差小于10%。本方法解决了锡矿石难分解的问题,可测定共存金属元素,也适合测定Sn含量在1.27%~62.49%之间的锡矿石中的微量和痕量元素及锡精矿中的微量元素。

关键词: 锡石, 金属元素, 除锡率, 碘化铵, 电感耦合等离子体质谱法

要点

(1) 利用碘化氨在较低温度下分解难溶化合物SnO2的原理测定锡石中的共伴生元素。

(2) 高纯铂丝作催化剂,加快了碘化铵与锡石的反应速度。

(3) 通过与碱熔方法对比验证了该方法的准确度。

Determination of Symbiotic and Associated Elements in Tin Ore by ICP-MS Combined with Pressurized Acid Digestion and Detinning Process

ABSTRACT

BACKGROUND:

Tin ore is a hard-to-decompose mineral. The main form is cassiterite (SnO2), and there are many symbiotic and associated elements. The commonly used acid-digestion method can barely dissolve SnO2, making it difficult for accurate measurement of symbiotic and associated elements in tin ore.

OBJECTIVES:

To decompose the tin ore completely, and accurately determine the symbiotic and associated trace elements in ore.

METHODS:

Hydrogen iodide can be produced in a non-aqueous state during the melting of ammonium iodide at a lower temperature, and the acidity of hydrogen iodide and the reductive decomposition of SnO2 by ammonia, and Sn separation by the sublimation of SnI4 which is the basis of the study. Under the catalysis of a high purity platinum, ammonium iodide was used to decompose cassiterite for 30 minutes in a Maffer furnace at 450℃. Tin was removed in the form of SnI4 with a removal rate of 98%. The residue was dissolved by 2 mL HF and 1 mL HNO3 using pressurized acid digestion. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) was used to accurately determine 24 elements in tin ore.

RESULTS:

The element detection limits are from 0.001 to 2.9 μg/g, and more than 90% of the elements have a relative standard deviation (RSD) of less than 5%. The relative error is less than 10%.

CONCLUSIONS:

The method solves the problem of tin ore being difficult to decompose, can measure the coexisting metal elements, and is also suitable for determining trace and ultra-trace elements in tin ore with Sn contents between 1.27% and 62.49% and trace elements in tin concentrate.

KEY WORDS: tin ore, metallic element, the removal rate of tin, ammonium iodide, Inductively Coupled Plasma-Mass Spectrometry

HIGHLIGHTS

(1) The principle of treating tin ore by ammonium iodide melting to digest insoluble SnO2 can be used to determine the symbiotic and associated elements in cassiterite.

(2) The reaction rate of ammonium iodide with cassiterite is improved using high purity platinum wire as the catalyst.

(3) The accuracy of the method is verified by comparison with the alkali fusion method.

本文参考文献

[1]

吕中海, 胡卫波, 张俊, 等. 锡矿石选矿工艺研究现状与进展[J]. 现代矿业, 2009, (10): 19-22. doi: 10.3969/j.issn.1674-6082.2009.10.005

Lü Z H, Hu W B, Zhang J, et al. Study status and progress of tin ore dressing process[J].Modern Mining, 2009, (10): 19-22. doi: 10.3969/j.issn.1674-6082.2009.10.005

[2]

杨小莉, 杨小丽, 李小丹, 等. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J]. 岩矿测试, 2014, 33(3): 321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006

Yang X L, Yang X L, Li X D, et al. Simultaneous determination of 14 trace elements in and tin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006

[3]

杨惠玲, 夏辉, 杜天军, 等. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J]. 岩矿测试, 2013, 32(6): 887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007

Yang H L, Xia H, Du T J, et al. Simultaneous determination of Sn, W, Mo, Cu, Pb and Zn in tin ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007

[4]

袁永海, 尹昌慧, 元志红, 等. 氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J]. 冶金分析, 2016, 36(3): 39-43.

Yuan Y H, Yin C H, Yuan Z H, et al. Determination of arsenic and antimony in tin ore by hydride generation atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 39-43.

[5]

陈小雁. 多金属共生锡矿石中铅的EDTA滴定法测定[J]. 湿法冶金, 2016, 35(3): 260-263.

Chen X Y. Determination of lead in tin ore by EDTA titrimetric method[J]. Hydrometallurgy of China, 2016, 35(3): 260-263.

[6]

童晓民, 王楠. 熔片X射线荧光光谱法测定锡矿石中八种重金属元素[J]. 分析试验室, 2016, 35(1): 97-101.

Tong X M, Wang N. X-ray fluorescence analysis of eight heavy metallic elements in tin ore using fused glass disc method[J]. Chinese Journal of Analysis Laboratory, 2016, 35(1): 97-101.

[7]

Bergerl D, Brügmann G, Pernicka E, et al. On smelting cassi-terite in geological and archaeological samples:Preparation and implications for provenance studies on metal artefacts with tin isotopes[J].Journal of Archaeological Science, 2017, .

[8]

松本健. 利用碘化铵熔融分解SnO2、Sb2O3和Bi2O3以及在分析中的应用[J]. 地球与环境, 1983, (5): 58-59.

Song B J. Decomposition of tin(Ⅳ) oxide, antimony(Ⅲ) oxide and bismuth(Ⅲ) oxide by fusion with ammonium iodide and its application for analysis of the environmental samples[J]. Earth and Environment, 1983, (5): 58-59.

[9]

何红蓼, 胡明月, 巩爱华, 等. 碘化物升华分离-电感耦合等离子体光谱法测定土壤和沉积物中砷、锑、铋、镉、锡[J]. 光谱学与光谱分析, 2008, 28(3): 663-666. doi: 10.3964/j.issn.1000-0593.2008.03.044

He H L, Hu M Y, Gong A H, et al. Determination of As, Sb, Bi, Cd and Sn in soils and sediments by inductively coupled plasma atomic emission spectrometry after sublimation separation as iodides[J].Spectroscopy and Spectral Analysis, 2008, 28(3): 663-666. doi: 10.3964/j.issn.1000-0593.2008.03.044

[10]

段文峰, 龚露. 碘化铵挥发与分离制样技术在原子荧光光谱法测定地质样品中痕量锗、锡、锑的运用[J]. 理化检验(化学分册), 2014, 50(8): 1004-1007.

Duan W F, Gong L. Application of volatilization of iodides of Ge, Sn and Sb by NH4I as techniques of sample pretreatment and separation to AFS determination of the 3 elements in geological samples[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(8): 1004-1007.

[11]

陈国娟. 碘化铵挥发-原子荧光光谱法测定铅锌矿中的锡[J]. 化学与黏合, 2016, 38(6): 461-463.

Chen G J. Determination of tin in lead-zinc mine by the volatilization of ammonium iodide-atomic fluorescence spectrometry[J]. Chemistry and Adhesion, 2016, 38(6): 461-463.

[12]

岩石矿物分析编委会. 岩石矿物分析[M] (第四版 第三分册) . 北京: 地质出版社, 2011: 118-207.

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis[M] (Fourth Edition:Volume Ⅲ) . Beijing: Geological Publishing House, 2011: 118-207.
[13]

何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2002, 21(5): 8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

He H L, Li B, Han L R, et al. Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICP-MS[J].Chinese Journal of Analysis Laboratory, 2002, 21(5): 8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

相似文献(共18条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[3]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[4]

林学辉, 刘昌岭. 等离子体发射光谱法同时测定大气气溶胶中多种金属元素. 岩矿测试, 1998, (2): 143-146.

[5]

郝原芳, 刘新, 宋丽华, 李丽君, 徐英奎. 电感耦合等离子体质谱法测定铅合金中的微量杂质元素镉和锡. 岩矿测试, 2016, 35(4): 378-383. doi: 10.15898/j.cnki.11-2131/td.2016.04.007

[6]

赵泰. 连续光源原子吸收光谱仪——划时代的技术革命. 岩矿测试, 2005, (2): -.

[7]

奥地利安东帕. HPA—S高温高压消解铂族金属. 岩矿测试, 2007, 26(3): 文后I-文后I.

[8]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[9]

李景喜, 陈发荣, 杨春茹, 崔维刚, 郑立, 王小如. 有机溶剂辅助微波消解-电感耦合等离子体质谱法测定多种原油中微量金属元素. 岩矿测试, 2011, 30(1): 12-16.

[10]

马生凤, 温宏利, 许俊玉, 屈文俊, 曹亚萍. 电感耦合等离子体质谱法测定地下水中44个元素. 岩矿测试, 2010, 29(5): 552-556.

[11]

赵玲, 冯永明, 李胜生, 时晓露, 王金云. 碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡. 岩矿测试, 2010, 29(4): 355-358.

[12]

金献忠, 谢健梅, 陈建国. 激光剥蚀电感耦合等离子体质谱法测定金属镀锡层的厚度. 岩矿测试, 2015, 34(3): 286-291. doi: 10.15898/j.cnki.11-2131/td.2015.03.004

[13]

刘洪青, 孙月婷, 时晓露, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中14个微量元素. 岩矿测试, 2008, 27(6): 427-430.

[14]

汤 行, 李艳香, 代杰瑞, 庞绪贵, 胡圣虹. 密闭消解电感耦合等离子体质谱法同时测定苹果中多元素含量及其分布. 岩矿测试, 2010, 29(3): 250-254.

[15]

李志伟, 邰自安, 任文岩, 高志军, 李艳华. 微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素. 岩矿测试, 2010, 29(3): 259-262.

[16]

赵素利, 张欣, 李曼, 温宏利, 屈文俊, 曹亚萍, 李超. 锍镍试金-电感耦合等离子体质谱法测定硫铁矿中铂族元素. 岩矿测试, 2011, 30(4): 412-415.

[17]

王君玉, 吴葆存, 李志伟, 韩敏, 钟莅湘. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素. 岩矿测试, 2011, 30(4): 440-445.

[18]

藏吉良, 李志伟, 赵伟, 刘延霞, 严洁. 风冷回流消解-电感耦合等离子体质谱法同时测定植物样品中46个元素. 岩矿测试, 2012, 31(2): 247-252.

计量
  • PDF下载量(5)
  • 文章访问量(33)
  • HTML全文浏览量(16)
  • 被引次数(0)
目录

Figures And Tables

碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素

马生凤, 赵文博, 朱云, 孙红宾, 王蕾, 温宏利