【引用本文】 于沨, 王登红, 于扬, 等. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 2019, 38(3): 354-364. doi: 10.15898/j.cnki.11-2131/td.201901180013
YU Feng, WANG Deng-hong, YU Yang, et al. The Distribution and Exploration Status of Domestic and Foreign Sedimentary-type Lithium Deposits[J]. Rock and Mineral Analysis, 2019, 38(3): 354-364. doi: 10.15898/j.cnki.11-2131/td.201901180013

国内外主要沉积型锂矿分布及勘查开发现状

1. 

中国地质大学(北京)地球科学与资源学院, 北京 100083

2. 

自然资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037

3. 

四川省地质矿产勘查开发局四零五地质队, 四川 都江堰 611830

收稿日期: 2019-01-18  修回日期: 2019-03-17  接受日期: 2019-04-09

基金项目: 国家重点研发计划项目(2017YFC0602705,2017YFC0602701);中国地质调查局地质调查项目(DD20160055,DD20160056,DD20160346)

作者简介: 于沨, 硕士研究生, 地球化学专业。E-mail:yufeng0214@foxmail.com

通信作者: 王登红, 博士, 研究员, 主要从事矿产资源研究。E-mail:wangdenghong@vip.sina.com

The Distribution and Exploration Status of Domestic and Foreign Sedimentary-type Lithium Deposits

1. 

School of Earth Science and Resources, China University of Geosciences(Beijing), Beijing 100083, China

2. 

Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Natural Resources; Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

3. 

The 405 Geological Team, Sichuan Province Geology and Mineral Exploration and Development Bureau, Dujiangyan 611830, China

Corresponding author: WANG Deng-hong, wangdenghong@vip.sina.com

Received Date: 2019-01-18
Revised Date: 2019-03-17
Accepted Date: 2019-04-09

摘要:随着近几年全球锂矿资源消耗的增加,世界各地掀起了锂矿找矿热。现阶段世界上开发利用的锂矿主要有三种类型:卤水型、伟晶岩型和沉积型,其中沉积型锂矿由于储量巨大,具有重要的地质意义和经济价值。现已发现的沉积型锂矿床主要分布在北美洲,少数分布在南美洲和欧洲,矿石主要以黏土矿为主。本文综述了全球主要沉积型锂矿的勘查开发现状,介绍了北美洲、南美洲、欧洲、亚洲典型的沉积型锂矿以及我国伴生沉积型锂矿矿物特点,有助于对我国沉积型锂矿床的勘查提供启示。对川东黄金口地区钻孔ZK001和钻孔ZK601中的岩心进行了连续取样,共采集196个样品,应用电感耦合等离子体质谱法分析测定其中的元素含量,研究锂的富集特征和沉积环境。研究结果揭示了锂元素主要富集在嘉陵江组的硬石膏和雷口坡组的碳酸盐岩中,含量最高可达103.25μg/g。这种富集可能是由于沉积环境变化和物源改变双重作用的结果,但具体的物质来源以及锂的赋存状态尚不清楚,有待进一步研究。此发现为四川盆地沉积型锂矿的勘查提供重要线索,也为进一步研究锂元素的来源、运移、富集及赋存状态提供了依据。

关键词: 沉积型锂矿, 锂矿化线索, 富锂黏土, 勘查开发现状, 黄金口

要点

(1) 综述了国内外主要沉积型锂矿的勘查开发现状。

(2) 揭示了川东黄金口雷口坡组和嘉陵江组高锂地层的锂元素含量特征。

(3) 锂元素富集可能是由于沉积环境变化和物源改变双重作用的结果。

The Distribution and Exploration Status of Domestic and Foreign Sedimentary-type Lithium Deposits

ABSTRACT

BACKGROUND:

With the increasing consumption of lithium resources in recent years, the boom of lithium exploration and development has grown worldwide. At present, three main types of lithium deposits have been explored and utilized in the world:brine-type, pegmatite-type and sedimentary-type. Among them, sedimentary-type lithium deposits have important geological significance and economic value due to their huge reserves.

OBJECTIVES:

To understand the distribution and status of exploration and development for domestic and foreign sedimentary-type lithium deposits, and provide experience for the exploration of sedimentary-lithium deposits in China.

METHODS:

The cores of borehole ZK001 and borehole ZK601 in the Huangjinkou area in Eastern Sichuan Province were continuously sampled and 196 samples were taken. Those samples were used to study lithium enrichment characteristics and depositional environment. Element content of samples was determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).

RESULTS:

Sedimentary-type lithium deposits were mainly distributed in North America, but a few were distributed in South America and Europe. The ore was mainly composed of clay minerals. The study of cores from Huangjinkou area revealed that lithium was mainly enriched in the anhydrite of the Jialingjiang Formation and the carbonate rocks of the Leikoupo Formation, with a maximum content of 103.25μg/g.

CONCLUSIONS:

The enrichment of lithium in the two strata may be due to the dual effects of depositional environment changes and provenance changes, but the specific provenance and occurrence of lithium were still unclear and need further investigation. The discovery of high-lithium strata provide important clues for the exploration of sedimentary-type lithium deposits in the Sichuan Basin, and provide scientific basis for further study on the source, migration, enrichment and occurrence of lithium.

KEY WORDS: sedimentary-type lithium deposits, lithium mineralization clues, lithium-bearing clay, status of exploration and development, Huangjinkou

HIGHLIGHTS

(1) Review of the current status of exploration and development of major sedimentary-type lithium deposits in China and abroad.

(2) Revealing of the characteristics of lithium content in the high-lithium strata of the Leikoupo Formation and the Jialingjiang Formation in Eastern Sichuan Province.

(3) The enrichment of lithium may be the results of the dual effects of depositional environment changes and provenance changes.

本文参考文献

[1]

王登红, 王瑞江, 付小方, 等. 对能源金属矿产资源基地调查评价基本问题的探讨——以四川甲基卡大型锂矿基地为例[J]. 地球学报, 2016, 37(4): 471-480.

Wang D H, Wang R J, Fu X F, et al. A discussion on the major problems related to geological investigation and assessment for energy metal resources base:A case study of the Jiajika large lithium mineral resource base[J]. Acta Geoscientica Sinica, 2016, 37(4): 471-480.

[2]

王登红, 孙艳, 刘喜方, 等. 锂能源金属矿产深部探测技术方法与找矿方向[J]. 中国地质调查, 2018, 5(1): 1-9.

Wang D H, Sun Y, Liu X F, et al. Deep exploration technology and prospecting direction for lithium energy metal[J]. Geological Survey of China, 2018, 5(1): 1-9.

[3]

刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2): 263-278.

Liu L J, Wang D H, Liu X F, et al. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 2017, 44(2): 263-278.

[4]

李康, 王建平. 中国锂资源开发利用现状及对策建议[J]. 资源与产业, 2016, 18(1): 82-86.

Li K, Wang J P. China's lithium resource development actuality and approaches[J]. Resources & Industries, 2016, 18(1): 82-86.

[5]

李建康, 刘喜方, 王登红, 等. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2269-2283.

Li J K, Liu X F, Wang D H, et al. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 2014, 88(12): 2269-2283.

[6]

Marquee Resources Ltd.Clayton Valley Lithium-Marquee Resources[EB/OL].http://www.marqueeresources.com.au/projects/clayton-valley-lithium/.2018.

[7]

Li THIUM-X Ltd.Clayton Valley-LiTHIUM-X[EB/OL].http://www.lithium-x.com/clayton_valley/.2018.

[8]

Cypress Development Corp.Clayton Valley Lithium Project, Nevada|Cypress Development Corp.[EB/OL].https://www.cypressdevelopmentcorp.com/projects/nevada/glory-lithium-project-nevada/.2018.

[9]

HotCopper.Big Sandy and Lordsburg Lithium Projects-HotCopper[EB/OL].https://hotcopper.com.au/documentdownload?id=uOMxKKzFkiWRTLKhOROKAxjvTDYC6w6%2ByhmZqOByke92GA%3D%3D.2018.

[10]

Zenith Minerals Ltd.Burro Creek USA-Zenith Minerals[EB/OL].http://www.zenithminerals.com.au/projects/burro-creek-usa/.2018.

[11]

Mining Atlas.Kings Valley[EB/OL].https://mining-atlas.com/project/Kings-Valley-Lithium-Mine-Project.php.2018.

[12]

Aimva.Kings Valley Lithium Project, Nevada USA NI 43-101 Technical Report[EB/OL].http://www.aimva.com.au/LiteratureRetrieve.aspx?ID=185311.2018.

[13]

Lithium Americas Ltd.Lithium Americas[EB/OL]. http://www.lithiumamericas.com/thacker-pass/.2018

[14]

Lithium Australia Ltd.Electra project-Lithium Australia[EB/OL].https://lithium-au.com/electra-project/.2018.

[15]

Bacanora Lithium Ltd.Sonora Lithium Bacanora Lithium[EB/OL].http://www.bacanoralithium.com/projects/sonora-lithium/.2018.

[16]

Plateau Energy Metals Ltd.Falchani Lithium Project-Plateau Energy Metals[EB/OL].http://plateaue-nergymetals.com/falchani-lithium-project/.2018.

[17]

赵元艺, 符家骏, 李运, 等. 塞尔维亚贾达尔盆地超大型锂硼矿床[J]. 地质论评, 2015, 61(1): 34-44.

Zhao Y Y, Fu J J, Li Y, et al. Super large lithium and boron deposit in Jadar Basin, Serbia[J]. Geological Review, 2015, 61(1): 34-44.

[18]

Rio Tinto Ltd.Jadar-Rio Tinto[EB/OL].https://www.riotinto.com/energyandminerals/jadar-4643.aspx#.2018.

[19]

张雪飞, 郑绵平. 蒙古国Khukh Del侏罗系沉积锂、钾赋存状态研究[J]. 地学前缘, 2014, 21(3): 55.

Zhang X F, Zheng M P. Study on the occurrence of lithium and potassium in Jurassic sediments in Khukh Del, Mongolia[J]. Earth Science Frontiers, 2014, 21(3): 55.

[20]

王涛, 赵晓东, 李军敏, 等. 重庆银矿垭口铝土矿锂的分布特征[J]. 地质找矿论丛, 2014, 29(4): 541-545.

Wang T, Zhao X D, Li J M, et al. Distribution characteristics of lithium in Yinkuangyakou bauxite deposit, Chongqing[J]. Contributions to Geology and Mineral Resources Research, 2014, 29(4): 541-545.

[21]

褚光琛.准格尔煤田煤中稀有金属富集机理的实验模拟[D].邯郸: 河北工程大学, 2015.

Chu G C.Simulated Experiment on Enrichment Mechanism of Rare Mental in Coal of Jungar Coalfield[D].Handan: Hebei University of Enginneering, 2015.

[22]

金中国, 周家喜, 黄智龙, 等. 黔北务-正-道地区典型铝土矿床伴生有益元素锂、镓和钪分布规律[J]. 中国地质, 2015, 42(6): 1910-1918.

Jin Z G, Zhou J X, Huang Z L, et al. The distribution of associated elements Li, Sc and Ga in the typical bauxite deposits over the Wuchuan-Zheng'an-Daozhen bauxite ore district, Northern Guizhou province[J]. Geology in China, 2015, 42(6): 1910-1918.

[23]

王登红, 李沛刚, 屈文俊, 等. 贵州大竹园铝土矿中钨和锂的发现与综合评价[J]. 中国科学(地球科学), 2013, 56(1): 145-152.

Wang D H, Li P G, Qu W J, et al. Discovery and preliminary study of the high tungsten and lithium contents in the Dazhuyuan bauxite deposit, Guizhou, China[J]. Science China:Earth Sciences, 2013, 56(1): 145-152.

[24]

Sun Y Z, Zhao C L, Qin S J, et al. Occurrence of some valuable elements in the unique 'high-aluminium coals' from the Jungar coalfield, China[J].Ore Geology Reviews, 2016, 72: 659-668. doi: 10.1016/j.oregeorev.2015.09.015

[25]

衣姝, 王金喜. 安家岭矿9号煤中锂的赋存状态和富集因素分析[J]. 煤炭与化工, 2014, 37(9): 7-10.

Yi S, Wang J X. Lithium occurrences and enrichment factor law in No.9 coal seam of Anjialing mine[J]. Coal and Chemical Industry, 2014, 37(9): 7-10.

[26]

李华, 许霞, 杨恺, 等. 山西平朔矿区4号煤中锂、镓资源成矿地质特征研究[J]. 中国煤炭地质, 2014, 26(12): 17-19. doi: 10.3969/j.issn.1674-1803.2014.12.04

Li H, Xu X, Yang K, et al. Lithium and gallium resources metallogenic geological characteristics in coal No.4, Pingshuo mining area, Shanxi[J].Coal Geology of China, 2014, 26(12): 17-19. doi: 10.3969/j.issn.1674-1803.2014.12.04

[27]

刘帮军, 林明月. 山西平朔矿区9#煤中锂的富集机理及物源研究[J]. 煤炭技术, 2015, 34(8): 115-117.

Liu B J, Lin M Y. Enrichment mechanism and material sources of lithium in Li-bearing coal seam No.9 from Pingshuo mining district of Shanxi Province[J]. Coal Technology, 2015, 34(8): 115-117.

[28]

刘帮军, 林明月. 宁武煤田平朔矿区9号煤中锂的富集机理[J]. 地质与勘探, 2014, 50(6): 1070-1075.

Liu B J, Lin M Y. Enrichment mechanism of lithium in coal seam No.9 of the Pingshuo mining district, Ningwu coalfield[J]. Geology and Exploration, 2014, 50(6): 1070-1075.

[29]

杨瑞东, 程伟, 高军波, 等. 黔西南煤层中铌、铀、钒和锂元素富集与潜在资源评价[J]. 贵州地质, 2017, 34(2): 77-81. doi: 10.3969/j.issn.1000-5943.2017.02.003

Yang R D, Cheng W, Gao J B, et al. Nb, U, V and Li element enrichment of coal seams and potential resource evaluation in Southwest Guizhou[J].Guizhou Geology, 2017, 34(2): 77-81. doi: 10.3969/j.issn.1000-5943.2017.02.003

[30]

潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28.

Pan G T, Xiao Q H, Lu S N, et al. Subdivison of techonic units in China[J]. Geology of China, 2009, 36(1): 1-28.

[31]

邓国仕, 李军敏, 杨桂花, 等. 渝南水江板桥铝土矿区锂的分布规律及其影响因素研究[J]. 中国矿业, 2014, (3): 72-79. doi: 10.3969/j.issn.1004-4051.2014.03.019

Deng G S, Li J M, Yang G H, et al. Distribution law of lithium and its influencing factors in Shuijiangbanqiao bauxite mining area, Southern Chongqing[J].China Mining Magazine, 2014, (3): 72-79. doi: 10.3969/j.issn.1004-4051.2014.03.019

[32]

迟清华. 应用地球化学元素丰度数据手册[M] . 北京: 地质出版社, 2007

Chi Q H. Applied Geochemical Elemental Abundance Data Sheet[M] . Beijing: Geological Publishing House, 2007
[33]

孙倩, 贾玉连, 申洪源, 等. 内蒙古黄旗海全新世湖泊沉积物中Rb、Sr分布及其环境意义[J]. 古地理学报, 2010, 12(4): 444-450.

Sun Q, Jia Y L, Shen H Y, et al. Distribution and environmental implication of Rb, Sr in the Holocene lacustrine sediments of Huangqihai Lake, Inner Mongolia[J]. Journal of Palaeogeography, 2010, 12(4): 444-450.

[34]

陈晹, 陈骏, 刘连文, 等. 最近13万年来黄土高原Rb/Sr记录与夏季风时空变迁[J]. 中国科学(地球科学), 2003, 33(6): 513-519.

Chen Y, Chen J, Liu L W, et al. The Rb/Sr record of the Loess Plateau and the temporal and spatial changes of the summer monsoon in the past 130000 years[J]. Scientia Sinica (Terrae), 2003, 33(6): 513-519.

[35]

陈骏, 安芷生. 最近800ka洛川黄土剖面中Rb-Sr分布和古季风变迁[J]. 中国科学(地球科学), 1998, 28(6): 498-504.

Chen J, An Z S. Rb-Sr distribution and paleo-mons change in the recent 800ka Luochuan loess profile[J]. Scientia Sinica (Terrae), 1998, 28(6): 498-504.

[36]

章桂芳, 郑卓, BarryRollet, 等. 闽江钻孔沉积物微量元素地球化学研究[J]. 海洋地质与第四纪地质, 2015, 35(2): 81-90.

Zhang G F, Zheng Z, Rollet B, et al. Trace elements geochemistry of Min River core sediments[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 81-90.

[37]

刘建清, 林家善, 冯伟明, 等. 四川盆地东南缘中上寒武统白云岩稀土元素特征及成因意义——以贵州毕节长树田剖面为例[J]. 矿物岩石, 2014, (1): 87-94.

Liu J Q, Lin J S, Feng W M, et al. The REE geochemical characteristics of middle-upper cambrian dolomite in Southeast Sichuan Basin and its significance:A case study of Changshutian profile in Bijie, Guizhou[J]. Journal of Mineralogy and Petrology, 2014, (1): 87-94.

相似文献(共19条)

[1]

王登红, 付小方. 四川甲基卡外围锂矿找矿取得突破. 岩矿测试, 2013, 32(6): 987-987.

[2]

代晶晶, 王登红, 代鸿章, 刘丽君, 令天宇. 川西甲基卡锂矿基地典型岩石及矿物反射波谱特征研究. 岩矿测试, 2018, 37(5): 507-517. doi: 10.15898/j.cnki.11-2131/td.201701110003

[3]

王成辉, 杨岳清, 王登红, 孙艳, 陈振宇, 谢国刚, 凡秀君. 江西九岭地区三稀调查发现磷锂铝石等锂铍锡钽矿物. 岩矿测试, 2018, 37(1): 108-110. doi: 10.15898/j.cnki.11-2131/td.201801030001

[4]

王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290.

[5]

宫明岗, 朱金荣. 电感耦合等离子体发射光谱法测定锂辉矿中的主次痕量元素. 岩矿测试, 1995, (3): 180-184.

[6]

龚伟. 原子吸收法测定化探样品中的银,镉,锂,钴和镍. 岩矿测试, 1989, (4): 317-319.

[7]

张莉, 桂建业, 张永涛. 抑制型离子色谱法同时测定水中锂和锶. 岩矿测试, 2006, 25(1): 87-88.

[8]

马生凤, 温宏利, 巩爱华, 屈文俊, 曹亚萍. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定硫化物矿中硅酸盐相的主成分. 岩矿测试, 2009, 28(6): 535-540.

[9]

左银虎. 火焰发射光谱法测定锂辉石中锂. 岩矿测试, 2009, 28(2): 199-200.

[10]

焦距, 杨啸涛, 袁继海, 樊兴涛, 刘晓, 詹秀春. 便携式Li-K分析仪的研制及其在锂辉石中锂的分析应用. 岩矿测试, 2016, 35(4): 366-372. doi: 10.15898/j.cnki.11-2131/td.2016.04.005

[11]

赵汀, 王登红, 王瑞江, 邓茂春, 陈为光. 克里格法在离子吸附型稀土矿勘查储量估算中的应用. 岩矿测试, 2014, 33(1): 126-132.

[12]

刘纯瑶, 苟龙飞, 邓丽, 金章东. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响. 岩矿测试, 2019, 38(1): 35-44. doi: 10.15898/j.cnki.11-2131/td.201806060070

[13]

黄华谷, 黄铁兰, 周兆帅, 屈文俊. 广东三个离子吸附型稀土矿的地球化学特征及开采现状. 岩矿测试, 2014, 33(5): 737-746.

[14]

杨政, 刘金凤. 应用混合锂盐熔剂和聚乙二醇凝聚剂快速测定岩石中硅的方法. 岩矿测试, 1983, (3): 240-240.

[15]

贾宝亭, 刘雪梅, 汤磊, 龙开明. 同位素稀释质谱法测定塑料闪烁体中掺杂锂同位素含量. 岩矿测试, 2006, 25(3): 243-245.

[16]

德国耶拿分析仪器股份公司. 发射模式连续光源原子吸收光谱法测定饮用水中的钠钾锂. 岩矿测试, 2006, 25(4): 397-397.

[17]

德国耶拿分析仪器股份公司中国总部. 发射模式连续光源原子吸收光谱法测定饮用水中的钠钾锂. 岩矿测试, 2008, 27(6): -.

[18]

袁红战, 祝云军, 武丽平, 张旭. 电感耦合等离子体发射光谱法测天然饱和卤水中的高含量锂. 岩矿测试, 2011, 30(1): 87-89.

[19]

曾江萍, 李小莉, 张楠, 王家松, 魏双, 王娜. 粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟. 岩矿测试, 2019, 38(1): 71-76. doi: 10.15898/j.cnki.11-2131/td.201804060038

计量
  • PDF下载量(18)
  • 文章访问量(55)
  • HTML全文浏览量(10)
  • 被引次数(0)
目录

Figures And Tables

国内外主要沉积型锂矿分布及勘查开发现状

于沨, 王登红, 于扬, 刘铸, 高娟琴, 仲佳爱, 秦燕