【引用本文】 唐晓勇, 倪晓芳, 商照聪, . 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 467-474. doi: 10.15898/j.cnki.11-2131/td.201911200161
TANG Xiao-yong, NI Xiao-fang, SHANG Zhao-cong. Effect and Correction of Iron in Soil on Accuracy of Chromium Determination by Portable X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(3): 467-474. doi: 10.15898/j.cnki.11-2131/td.201911200161

土壤中铁元素对铬元素p-XRF测定准确度的影响与校正

1. 

上海化工研究院有限公司, 上海 200062

2. 

工业(土壤污染修复)产品质量控制与技术评价实验室, 上海 200062

3. 

上海化工院环境工程有限公司, 上海 200062

收稿日期: 2019-11-20  修回日期: 2020-02-17  接受日期: 2020-05-12

基金项目: 上海市科学技术委员会项目“污染场地重金属快速检测技术及质量监控评价系统研发与示范应用”(18DZ12041);上海市科学技术委员会项目“上海市危险化学品分类鉴定及应急救援检测专用技术服务平台”(17DZ2290800)

作者简介: 唐晓勇, 硕士研究生, 从事p-XRF对土壤中重金属测定的研究工作。E-mail:xytang18721377170@163.com

通信作者: 倪晓芳, 博士, 高级工程师, 长期从事土壤调查、修复工作。E-mail:nxf_sds@163.com

Effect and Correction of Iron in Soil on Accuracy of Chromium Determination by Portable X-ray Fluorescence Spectrometry

1. 

Shanghai Research Institute of Chemical Industry Co., LTD, Shanghai 200062, China

2. 

Quality Control and Technology Assessment Laboratory of Industrial(Soil Remediation) Product(MIIT), Shanghai 200062, China

3. 

Shanghai Research Institute of Chemical Industry Environmental Engineering Co., LTD, Shanghai 200062, China

Corresponding author: NI Xiao-fang, nxf_sds@163.com

Received Date: 2019-11-20
Revised Date: 2020-02-17
Accepted Date: 2020-05-12

摘要:便携式X射线荧光光谱仪(p-XRF)能够快速检测土壤中的铬元素,但由于土壤成分复杂、基体效应不明,导致其检测准确度较低。铁元素作为土壤基体中的主量元素,在不同类型土壤中含量变化范围大,是影响铬元素p-XRF测定准确度的主要元素之一,深入研究铁元素对铬元素荧光强度的影响有助于提高p-XRF测定土壤中铬元素的准确度。本文以人工配置的铬-铁土壤样品研究铬元素荧光强度与铬元素含量和铁元素含量的变化关系,采用经验公式校正铁元素对铬元素p-XRF分析准确度的影响。结果表明:土壤样品中的铁元素含量固定不变时,铬元素的含量与其相应的特征X射线荧光强度呈线性变化,相关系数均在0.9990以上,且铬元素荧光强度的增长速率随着土壤中铁元素含量的增加而增大;另外通过对同一铬含量、不同铁含量土壤样品的研究,验证了铁元素对铬元素的荧光增强效应,并发现该增强效应还与铁、铬元素的相互作用有关。结合铬、铁元素基体效应研究结果,本文建立了铁元素对铬元素p-XRF测定的校正方程式,相比于普通的线性回归,该方法的相关系数从0.9011提高到了0.9986,硅藻土样品的p-XRF分析平均相对误差从21.94%下降至2.52%,实际土壤样品的p-XRF分析平均相对误差从51.02%下降至5.21%。

关键词: 便携式X射线荧光光谱, 土壤, 重金属, , , 基体效应

要点

(1) 土壤中铁元素对铬元素p-XRF测定荧光强度有增强效应。

(2) 铬元素荧光强度的增长速率随着土壤中铁元素含量的增加而增大。

(3) 建立了铁元素对铬元素p-XRF测定影响的优化校正模型。

(4) 模型相关系数提高至0.9986,实际土壤样品平均相对误差下降至5.21%。

Effect and Correction of Iron in Soil on Accuracy of Chromium Determination by Portable X-ray Fluorescence Spectrometry

ABSTRACT

BACKGROUND:

The portable X-ray fluorescence spectrometer (p-XRF) can detect chromium in soil rapidly, but its detection accuracy is low because of the complexity of soil composition and the unknown matrix effect. As the main element in soil matrix, iron content varies widely in different types of soil, which is one of the main elements affecting the accuracy of p-XRF determination of chromium.

OBJECTIVES:

To improve the accuracy of p-XRF in the determination of chromium in soil.

METHODS:

The relationship between the fluorescence intensity of chromium and the content of chromium and iron was studied by using artificial soil samples with added chromium and iron. A calibration model was established based on research results.

RESULTS:

When the content of iron in the soil sample was fixed, the content of chromium changed linearly with its corresponding characteristic X-ray fluorescence intensity, and the correlation coefficients were all above 0.9990. Moreover, the growth rate of the fluorescence intensity of chromium increased with the increase of iron content in the soil. In addition, through the study of soil samples with the same chromium content and different iron content, the fluorescence enhancement effect of iron on chromium was verified, and it was found that the enhancement effect was also related to the interaction of iron and chromium.

CONCLUSIONS:

Combining the research results of matrix effects of chromium and iron, the correction equation of effect of iron on p-XRF determination of chromium has been established. Compared with ordinary linear regression, the correlation coefficient of this method increased from 0.9011 to 0.9986. The average relative error for p-XRF analysis of diatomite samples decreased from 21.94% to 2.52%, and the average relative error of p-XRF analysis of actual soil samples decreased from 51.02% to 5.21%.

KEY WORDS: portable X-ray fluorescence spectrometry, soil, heavy metal, iron, chromium, matrix effect

HIGHLIGHTS

(1) Iron has an enhanced effect on the fluorescence intensity of chromium in the soil measured by p-XRF.

(2) The growth rate of the fluorescence intensity of chromium increased with the increasing iron content in the soil.

(3) An optimized correction model for the effect of iron on p-XRF determination of chromium was established.

(4) The correlation coefficient of the model increased to 0.9986, and the average relative error reduced to 5.21% for actual soil samples.

本文参考文献

[1]

王晶晶, 范纯. X射线荧光光谱法测定锌铁合金镀层铁含量的影响因素探讨[J]. 冶金分析, 2019, 39(10): 49-54.

Wang J J, Fan C. Discussion on influencing factors during the determination of iron content in galvanized coating of zinc-iron alloy by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2019, 39(10): 49-54.

[2]

Byers H L, Mchenry L J, Grundl T J, et al. XRF techniques to quantify heavy metals in vegetables at low detection limits[J].Food Chemistry:X, 2019, 1: 100001.

[3]

Sugiyama T, Uo M, Wada T, et al. Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS[J].Scientific Reports, 2015, 5: 10672.

[4]

Moreno-Suarez A I, Ager F J, Rodriquez-Segovia C, et al. Feasibility of different cleaning methods for silver-copper alloys by X-ray fluorescence:Application to ancient Greek silver coins[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 116: 85-91.

[5]

Guerra M B B, de Almeida E, Carvalho G G A, et al. Comparison of analytical performance of benchtop and handheld energy dispersive X-ray fluorescence systems for the direct analysis of plant materials[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1667-1674.

[6]

徐聪, 赵婷, 池海涛, 等. 微波消解-ICP-MS法测定土壤及耕作物小麦中的8种重金属元素[J]. 中国测试, 2019, 45(5): 85-92.

Xu C, Zhao T, Chi H T, et al. Determination of eight kinds of heavy metals elements in cultivated soil and the wheat by microwave digestion-ICP-MS method[J]. China Measurement and Test, 2019, 45(5): 85-92.

[7]

周宝宣, 袁琦. 土壤重金属检测技术研究现状及发展趋势[J]. 应用化工, 2015, 44(1): 131-138.

Zhou B X, Yuan Q. Current situation and development trend of soil heavy metals detection[J]. Applied Chemical Industry, 2015, 44(1): 131-138.

[8]

朱锋, 胡星云, 郭照冰, 等. 快速消解测定土壤中金属元素[J]. 分析试验室, 2019, 38(8): 906-911.

Zhu F, Hu X Y, Guo Z B, et al. Determination of heavy metals in soil by rapid digestion[J]. Chinese Journal of Analysis Laboratory, 2019, 38(8): 906-911.

[9]

田志仁, 封雪, 姜晓旭, 等. 生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价[J]. 岩矿测试, 2019, 38(5): 479-488.

Tian Z R, Feng X, Jiang X X, et al. Evaluation of data quality on the detection of heavy metals in soils by atomic absorption spectrometry or atomic fluorescence spectrometry and X-ray fluorescence spectrometry in ecological environment monitoring[J]. Rock and Mineral Analysis, 2019, 38(5): 479-488.

[10]

朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129-137.

Zhu M J. Application of portable XRF analyzer in soil detection and its influencing factors[J]. Environmental Monitoring in China, 2019, 35(6): 129-137.

[11]

邝荣禧, 胡文友, 何跃, 等. 便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J]. 土壤, 2015, 47(3): 589-595.

Kuang R X, Hu W Y, He Y, et al. Application of portable X-ray fluorescence (PXRF) for rapid analysis of heavy metals in agricultural soils around mining area[J]. Soils, 2015, 47(3): 589-595.

[12]

王世芳, 韩平, 王纪华, 等. X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J]. 食品安全质量检测学报, 2016, 7(11): 4394-4400.

Wang S F, Han P, Wang J H, et al. Application of X-ray fluorescence spectrometry on the detection of heavy metals in soil[J]. Journal of Food Safety and Quality, 2016, 7(11): 4394-4400.

[13]

徐英岚. 基于CNKI的X射线荧光光谱研究文献计量学分析[J]. 冶金分析, 2019, 39(10): 1-7.

Xu Y L. Bibliometric analysis on research trend of X-ray fluorescence spectrometry based on CNKI[J]. Metallurgical Analysis, 2019, 39(10): 1-7.

[14]

于兆水, 张勤, 李小莉, 等. 高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素[J]. 岩矿测试, 2014, 33(6): 844-848.

Yu Z S, Zhang Q, Li X L, et al. Determination of 23 elements in biological samples by wavelength dispersion X-ray fluorescence spectrometry with high pressure powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 844-848.

[15]

李可及. 熔融制样X射线荧光光谱法测定岩盐中的主量成分[J]. 岩矿测试, 2016, 35(3): 290-294.

Li K J. Determination of major components in rock salt by X-ray fluorescence spectrometry with sample fusion[J]. Rock and Mineral Analysis, 2016, 35(3): 290-294.

[16]

李强, 张学华. 粉末压片-X射线荧光光谱法快速分析多金属结核和富钴结壳中22种组分[J]. 冶金分析, 2014, 34(1): 28-33.

Li Q, Zhang X H. Rapid determination of twenty-two components in polymetallic nodule and cobalt-rich crusts by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2014, 34(1): 28-33.

[17]

杨桂兰, 倪晓芳, 张长波, 等. 基于便携式X射线荧光光谱法的土壤重金属快速检测[J]. 浙江农业学报, 2019, 31(11): 1903-1908.

Yang G L, Ni X F, Zhang C B, et al. Rapid determination of heavy metals in soils based on portable X-ray fluorescence spectroscopy[J]. Acta Agriculturae Zhejiangensis, 2019, 31(11): 1903-1908.

[18]

吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383-398.

Ji A. Development of X-ray fluorescence spectrometry in the 30 years[J]. Rock and Mineral Analysis, 2012, 31(3): 383-398.

[19]

杨桂兰, 商照聪, 李良君, 等. 便携式X射线荧光光谱法在土壤重金属快速检测中的应用[J]. 应用化工, 2016, 45(8): 1586-1591.

Yang G L, Shang Z C, Li L J, et al. Application of portable-XRF spectrometry for rapid determination of common heavy metals in soil[J]. Applied Chemical Industry, 2016, 45(8): 1586-1591.

[20]

殷惠民, 杜祯宇, 李玉武, 等. 能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J]. 冶金分析, 2018, 38(4): 1-10.

Yin H M, Du Z Y, Li Y W, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(4): 1-10.

[21]

倪子月, 陈吉文, 刘明博, 等. 能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J]. 冶金分析, 2016, 36(10): 10-14.

Ni Z Y, Chen J W, Liu M B, et al. Interference correction of energy dispersive X-ray fluorescence spectrometric determination of chromium and manganese in soil[J]. Metallurgical Analysis, 2016, 36(10): 10-14.

[22]

杨桂兰, 商照聪, 李良君, 等. 基于均匀设计的土壤重金属PXRF检测方法优化研究[J]. 浙江农业学报, 2016, 28(12): 2123-2129.

Yang G L, Shang Z C, Li L J, et al. Application of uniform design method in optimizing PXRF determination methods of heavy metals in soil[J]. Acta Agriculturae Zhejiangensis, 2016, 28(12): 2123-2129.

[23]

冉景, 王德建, 王灿, 等. 便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J]. 光谱学与光谱分析, 2014, 34(11): 3113-3118.

Ran J, Wang D J, Wang C, et al. Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis[J].Spectroscopy and Spectral Analysis, 2014, 34(11): 3113-3118.

[24]

Ribeiro B T, Silva S H G, Silva E A, et al. Portable X-ray fluorescence(pXRF) applications in tropical Soil Science[J]. Ciência E Agrotecnologia, 2017, 41(3): 245-254.

[25]

李哲, 庹先国, 穆克亮, 等. 矿样中钛铁EDXRF分析的基体效应和神经网络校正研究[J]. 核技术, 2009, 32(1): 35-40.

Li Z, Yu X G, Mu K L, et al. Matrix effect and ANN correcting technique in EDXRF analysis of Ti and Fe in core samples[J]. Nuclear Techniques, 2009, 32(1): 35-40.

[26]

齐海君, 王建英, 张雪峰, 等. 白云鄂博矿中铈铁钙EDXRF分析的基体效应研究[J]. 光谱学与光谱分析, 2015, 35(12): 3510-3513.

Qi H J, Wang J Y, Zhang X F, et al. Matrix effect of Fe and Ca on EDXRF analysis of Ce concentration in bayan obo ores[J].Spectroscopy and Spectral Analysis, 2015, 35(12): 3510-3513.

[27]

董天宇, 王海江, YungerA J, 等. 便携式X射线荧光光谱仪实验室异位检测法的实用性研究[J]. 土壤, 2017, 49(4): 853-857.

Dong T Y, Wang H J, Yunger A J, et al. Practicality validation of portable X-ray fluorescence for ex-situ measuring soil heavy metals in laboratory[J]. Soils, 2017, 49(4): 853-857.

[28]

李自强, 李小英, 钟琦, 等. 电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J]. 岩矿测试, 2016, 35(1): 37-41.

Li Z Q, Li X Y, Zhong Q, et al. Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J]. Rock and Mineral Analysis, 2016, 35(1): 37-41.

[29]

邓述培, 范鹏飞, 唐玉霜, 等. X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素[J]. 中国无机分析化学, 2019, 9(4): 12-15.

Deng S P, Fan P F, Tang Y S, et al. Determination of 9 kinds of soil pollution of heavy metals elements in samples by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 12-15.

[30]

张环月, 季守华, 李春艳, 等. X射线荧光光谱法测定铬、钒、钛共存的钛合金中12种元素[J]. 冶金分析, 2014, 34(5): 30-34.

Zhang H Y, Ji S H, Li C Y, et al. Determination of twelve elements coexisting with chromium, vanadium and titanium in titanium alloys by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2014, 34(5): 30-34.

相似文献(共19条)

[1]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[2]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[3]

刘平, 杨军红. 数字化技术在铁基合金铬元素可见光谱分析中的应用. 岩矿测试, 2008, 27(1): 33-36.

[4]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[5]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[6]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[7]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[8]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[9]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[10]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[11]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[12]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[13]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[14]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[15]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[16]

黄近丹. X射线能地测定土壤中7种主次量元素. 岩矿测试, 1999, (4): 308-310.

[17]

王亚平, 鲍征宇. 恬矿库周围土壤中重金属存在形态特征研究. 岩矿测试, 2000, (1): 7-13.

[18]

潘小川, 刘晓端, 李奇, 葛晓立, 罗松光. 密云水库水体的地球化学特征. 岩矿测试, 2003, (1): 44-48.

[19]

王图锦, 潘瑾, 刘雪莲. 三峡库区澎溪河消落带土壤中重金属形态分布与迁移特征研究. 岩矿测试, 2016, 35(4): 425-432. doi: 10.15898/j.cnki.11-2131/td.2016.04.015

计量
  • PDF下载量(9)
  • 文章访问量(262)
  • HTML全文浏览量(59)
  • 被引次数(0)
目录

Figures And Tables

土壤中铁元素对铬元素p-XRF测定准确度的影响与校正

唐晓勇, 倪晓芳, 商照聪