【引用本文】 夏传波, 成学海, 张会堂, 等. 熔融制样-X射线荧光光谱法测定电气石中12种主次量元素[J]. 岩矿测试, 2018, 37(1): 36-42. doi: 10.15898/j.cnki.11-2131/td.201610260197
XIA Chuan-bo, CHENG Xue-hai, ZHANG Hui-tang, et al. Determination of Twelve Major and Minor Elements in Tourmaline by X-ray Fluorescence Spectrometry with Fusion Sample Preparation[J]. Rock and Mineral Analysis, 2018, 37(1): 36-42. doi: 10.15898/j.cnki.11-2131/td.201610260197

熔融制样-X射线荧光光谱法测定电气石中12种主次量元素

1. 

山东省地质科学研究院, 山东 济南 250013

2. 

山东省金属矿产成矿地质过程与资源利用重点实验室, 山东 济南 250013

收稿日期: 2016-10-26  修回日期: 2017-04-30  接受日期: 2017-06-15

基金项目: 国土资源公益性行业科研专项(201311096)

作者简介: 夏传波, 硕士, 工程师, 主要从事岩石矿物中无机元素分析。E-mail:chuanbo007@126.com

Determination of Twelve Major and Minor Elements in Tourmaline by X-ray Fluorescence Spectrometry with Fusion Sample Preparation

1. 

Shandong Institute of Geological Sciences, Jinan 250013, China

2. 

Key Laboratory of Geological Processes for Mineralization of Metal Minerals and Resource Utilization in Shandong Province, Jinan 250013, China

Received Date: 2016-10-26
Revised Date: 2017-04-30
Accepted Date: 2017-06-15

摘要:电气石是一类含硼的铝硅酸盐矿物,化学成分复杂、化学稳定性强,不易湿法分解,B2O3含量较高,导致其主次量元素的同时测定存在一定困难。本文采用熔融法制样,建立了X射线荧光光谱法测定电气石Na2O、MgO、Al2O3、SiO2、P2O5、K2O、CaO、TiO2、V2O5、Cr2O3、MnO、TFe2O3等主次量元素的分析方法。样品与四硼酸锂-偏硼酸锂-氟化锂(质量比为4.5:1:0.4)混合熔剂的稀释比例为1:10,消除了粒度效应和矿物效应;在缺少电气石标准物质的情况下,选择土壤、水系沉积物及多种类型的地质标准物质绘制校准曲线,利用含量与电气石类似的标准物质验证准确度,测定结果的相对标准偏差小于4.2%。采用所建方法测定四种不同类型电气石实际样品,测定值与经典化学法基本吻合。本方法解决了电气石不易湿法分解和硼的干扰问题,测定结果准确可靠,与其他方法相比操作简便,分析周期短。

关键词: 电气石, 主次量元素, 熔融制样, X射线荧光光谱法

Determination of Twelve Major and Minor Elements in Tourmaline by X-ray Fluorescence Spectrometry with Fusion Sample Preparation

KEY WORDS: tourmaline, major and minor elements, fusion sample preparation, X-ray Fluorescence Spectrometry

Highlights

· Twelve major and minor elements in tourmaline were determined by XRF with fusion sample preparation.

· This method solved the problem that tourmaline is difficult to decompose and the interference effect of boron element.

· Accuracy, precision and detection limit of most elements were improved, and the method is simple, less time-consuming and low cost.

本文参考文献

[1]

胡应模, 陈旭波, 汤明茹, 等. 电气石功能复合材料研究进展及前景展望[J]. 地学前缘, 2014, 21(5): 331-337.

Hu Y M, Chen X B, Tang M R, et al. Research development and prospects of functional tourmaline composites[J]. Earth Science Frontiers, 2014, 21(5): 331-337.

[2]

黄雪飞, 张宝林, 李晓利, 等. 电气石研究进展及其找矿意义[J]. 黄金科学技术, 2012, 20(3): 56-65.

Huang X F, Zhang B L, Li X L, et al. Research progress of tourmaline and its prospecting significance[J]. Gold Science & Technology, 2012, 20(3): 56-65.

[3]

Hinsberg V J V, Henry D J, Marschall H R, et al. Tourmaline:An ideal indicator of its host environment[J].Canadian Mineralogist, 2011, 49(1): 1-16. doi: 10.3749/canmin.49.1.1

[4]

岩石矿物分析编委会. 岩石矿物分析(第四版第二分册)[M] . 北京: 地质出版社, 2011: 390-396.

The Editorial Committee of Rock and Mineral Analysis . Rock and Mineral Analysis (Fourth Edition:Volume Ⅱ)[M] . Beijing: Geological Publishing House, 2011: 390-396.
[5]

King R W, Kerrich R W, Daddar R, et al. REE distributions in tourmaline:An INAA technique involving pretreatment by B volatilization[J]. American Mineralogist, 1988, 73: 424-431.

[6]

de Oliveira E F, Lacerda M A S, Amaral A M, et al. Chemical Composition of Tourmaline by Instrumental Neutron Activation Analysis[C]//Proceedings of International Nuclear Atlantic Conference-INAC 2005 Santos. Brazil, 2005.

[7]

Aigbe S O, Ewa I O B, Ogunleye P O, et al. Elemental characterization of some Nigerian gemstones:Tourmaline, fluorite and topaz by instrumental neutron activation analysis[J]. Journal of Radioanalytical & Nuclear Chemistry, 2013, 295(1): 801-805.

[8]

成学海, 夏传波, 郑建业, 等. 封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素[J]. 岩矿测试, 2017, 36(3): 231-238.

Cheng X H, Xia C B, Zheng J Y, et al. Simultaneous determination of 29 trace elements in tourmaline samples by inductively coupled plasma mass spectrometry with pressurized acid decomposition[J]. Rock and Mineral Analysis, 2017, 36(3): 231-238.

[9]

Lihareva N, Kosturkova P, Vakarelska T, et al. Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline[J].Fresenius Journal of Analytical Chemistry, 2000, 367(1): 84. doi: 10.1007/s002160051603

[10]

Tamer K, Yusuf K, Shao Y J, et al. Determination of tourma-line composition in pegmatite from Buldan, Denizli (Western Anatolia, Turkey) using XRD, XRF, and confocal Raman spectroscopy[J].Spectroscopy Letters, 2013, 46(7): 499-506. doi: 10.1080/00387010.2012.760102

[11]

Gullu B, Kadioglu Y K. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma:CRS, XRD and PED-XRF methods[J]. Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy, 2017, 183: 68.

[12]

李国会, 李小莉. X射线荧光光谱分析熔融法制样的系统研究[J]. 冶金分析, 2015, 35(7): 1-9.

Li G H, Li X L. Systematic study on the fusion sample preparation in X-ray fluorescence spectrometric analysis[J]. Metallurgical Analysis, 2015, 35(7): 1-9.

[13]

Watanabe M. Sample preparation for X-ray fluorescence analysis Ⅳ.Fusion bead method-Part 1:Basic principles[J]. Rigaku Journal, 2015, 32(2): 12-17.

[14]

周建辉, 白金峰. 熔融玻璃片制样-X射线荧光光谱测定页岩中主量元素[J]. 岩矿测试, 2009, 28(2): 179-181.

Zhou J H, Bai J F. Determination of major elements in shale samples by X-ray fluorescence spectrometry with fused glass disc sample preparation[J]. Rock and Mineral Analysis, 2009, 28(2): 179-181.

[15]

冯晓军. 熔融制样-X射线荧光光谱法测定蛇纹石中主次组分[J]. 冶金分析, 2017, 37(4): 27-32.

Feng X J. Determination of major and minor components in serpentine by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2017, 37(4): 27-32.

[16]

Berryman E J, Kutzschbach M, Trumbull R B, et al. Tourmaline as a petrogenetic indicator in the Pfitsch Formation, Western Tauern Window, Eastern Alps[J].Lithos, 2017, 284-285: 138-155. doi: 10.1016/j.lithos.2017.04.008

[17]

龚仓, 李高湖, 付桂花, 等. X射线荧光光谱法测定富砷地质样品中的主次痕量元素[J]. 分析试验室, 2014, 33(10): 1220-1224.

Gong C, Li G H, Fu G H, et al. Determination of major, minor and trace elements in geological samples with arsenic by X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2014, 33(10): 1220-1224.

相似文献(共20条)

[1]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[2]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[3]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[4]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[5]

仵利萍, 刘卫. 熔融制样-X射线荧光光谱法测定重晶石中主次量元素. 岩矿测试, 2011, 30(2): 217-221.

[6]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[7]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[8]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[9]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[10]

李鹏程, 王梅英, 李艳华, 张明炜, 刘春霞, 王冀艳, 刘勉, 陈冲科, 鲁鲲, 李振. 熔融制样X射线荧光光谱法测定珍珠岩矿中主量元素. 岩矿测试, 2015, 34(1): 104-110. doi: 10.15898/j.cnki.11-2131/td.2015.01.014

[11]

魏灵巧, 宋红元, 易达, 罗磊, 付胜波, 黄瑞成. 熔融制样X射线荧光光谱法测定含硫量高的石膏矿物中主次量元素. 岩矿测试, 2015, 34(4): 448-453. doi: 10.15898/j.cnki.11-2131/td.2015.04.012

[12]

普旭力, 吴亚全, 王鸿辉, 董清木, 蔡鹭欣, 潘忠厚. X射线荧光光谱法同时测定铁矿石中主次量组分. 岩矿测试, 2008, 27(5): 353-356.

[13]

曾江萍, 吴磊, 李小莉, 王娜, 张莉娟. 较低稀释比熔融制样X射线荧光光谱法分析铬铁矿. 岩矿测试, 2013, 32(6): 915-919.

[14]

邓赛文, 梁国立. X射线荧光分析中熔融制样的稀释率和烧失量校正. 岩矿测试, 1995, (3): 189-192.

[15]

逯义. X射线荧光光谱法测定稀土精矿中的稀土元素分量. 岩矿测试, 2012, 31(2): 277-281.

[16]

曹国洲, 应晓浒. 熔融制样X射线荧光光谱法测定钠长石钾长石中多元素. 岩矿测试, 2003, (3): 221-224.

[17]

李可及. 熔融制样X射线荧光光谱法测定岩盐中的主量成分. 岩矿测试, 2016, 35(3): 290-294. doi: 10.15898/j.cnki.11-2131/td.2016.03.012

[18]

叶淑爱, 王伟, 普旭力, 蔡继杰. 熔融制样X射线荧光光谱法测定碳化钨及其废料中的钨. 岩矿测试, 2015, 34(1): 99-103. doi: 10.15898/j.cnki.11-2131/td.2015.01.013

[19]

成学海, 夏传波, 郑建业, 张文娟, 刘晶. 封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素. 岩矿测试, 2017, 36(3): 231-238. doi: 10.15898/j.cnki.11-2131/td.201609220143

[20]

夏鹏超, 李明礼, 王祝, 李代琼, 胡亚燕. 粉末压片制样-波长色散X射线荧光光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷镍硫. 岩矿测试, 2012, 31(3): 468-472.

计量
  • PDF下载量(33)
  • 文章访问量(517)
  • HTML全文浏览量(202)
  • 被引次数(0)
目录

Figures And Tables

熔融制样-X射线荧光光谱法测定电气石中12种主次量元素

夏传波, 成学海, 张会堂, 赵伟, 王卿