【引用本文】 孟洁, 王静, 肖咸德, 等. 有机磷农药污染地块异味污染调查与健康风险评估[J]. 岩矿测试, 2021, 40(6): 907-918. doi: 10.15898/j.cnki.11-2131/td.202012140164
MENG Jie, WANG Jing, XIAO Xian-de, et al. Investigation of the Major Odor Contributors and Health Risk Assessment in the Organophosphorus Pesticide Field[J]. Rock and Mineral Analysis, 2021, 40(6): 907-918. doi: 10.15898/j.cnki.11-2131/td.202012140164

有机磷农药污染地块异味污染调查与健康风险评估

1. 

天津市生态环境科学研究院, 国家环境保护恶臭污染控制重点实验室, 天津 300191

2. 

天津迪兰奥特环保科技开发有限公司, 天津 300191

收稿日期: 2020-12-14  修回日期: 2021-05-13  接受日期: 2021-10-08

基金项目: 国家重点研发计划项目(2019YFC1806102)

作者简介: 孟洁, 硕士, 工程师, 从事恶臭物质检测方法的开发与恶臭污染源排放特征、致臭物质分析研究。E-mail: sabrina_meng@126.com

通信作者: 李伟芳, 博士, 教授级高级工程师, 从事大气及异味污染的形成机理、影响评估与控制管理研究。E-mail: lwf1919@163.com

Investigation of the Major Odor Contributors and Health Risk Assessment in the Organophosphorus Pesticide Field

1. 

State Key Laboratory of Odor Pollution Control, Tianjin Academy of Ecological and Sciences, Tianjin 300191, China

2. 

Environmental Science and Technology Development Co., Ltd. in Tianjin, Tianjin 300191, China

Corresponding author: LI Wei-fang, lwf1919@163.com

Received Date: 2020-12-14
Revised Date: 2021-05-13
Accepted Date: 2021-10-08

摘要:农药污染地块修复过程中频繁出现异味污染问题,严重影响周边居民日常生活和身体健康。以往报道多集中在场地内有毒有害物质分析,较少关注场地异味污染问题。为预测某有机磷农药场地修复过程异味污染情况,本文以该地块7个潜在异味污染控制区为研究对象,分析了近土壤空气异味污染程度和影响范围,并应用气相色谱-四极杆/静电场轨道阱高分辨质谱技术测定近土壤空气、土壤中挥发性有机物(VOCs)和半挥发性有机物(SVOCs),阐明地块控制区内异味污染排放特征,评估近土壤空气地块污染的人体健康风险。结果表明,7个区域监测点位散发不同程度刺激性气味,臭气浓度值范围为309~72443;生产区异味影响范围最大,达到3.2km;共识别出近土壤环境空气中209种VOCs、土壤样品中246种VOCs和SVOCs,主要包括芳香化合物、卤代物、烷烯烃和含氧有机物;主要异味贡献物质种类包括有机硫化物、芳香化合物和含氧有机物;7个区域近土壤空气均存在致癌风险(>1.0×10-4),5个区域存在非致癌风险,主要致癌物质为1,4-二氯苯、苯、四氯化碳。本文开展的农药场地异味物质组分与致病致癌风险持续研究结果,可为研究区生态环境修复和居民健康保护等提供重要依据。

关键词: 有机磷污染地块, 异味污染, 挥发性有机物, 半挥发性有机物, 气相色谱-高分辨质谱法, 排放特征, 健康风险

要点

(1) 结合高精度色谱和异味贡献分析法进行农药异味污染物定量分析与评估。

(2) 评估发现在监测点位普遍存在高于可接受范围的人体致癌风险。

(3) 高浓度农药异味污染物与高致病致癌风险间的潜在关联不可忽视。

Investigation of the Major Odor Contributors and Health Risk Assessment in the Organophosphorus Pesticide Field

ABSTRACT

BACKGROUND:

Odorous gases, derived from organic decomposition in the soil, frequently cause odor nuisances, seriously affecting the daily life and health of surrounding residents. In the past, reports mostly focused on the analysis of toxic and hazardous substances in the site, and less attention was paid to the problem of site odor pollution.

OBJECTIVES:

To predict the odor pollution of an organophosphorus pesticide site during the restoration, clarify the characteristics of odor pollution emission in the control area, and assess the human health risk of the pollution of the air near the soil.

METHODS:

7 potential odor pollution control areas were selected as the research objects, and the pollution degree and impact range of the nearby soil air odor was analyzed. Sensory analysis, gas chromatography high-resolution mass spectrometry (GC-HRMS) and reference concentrations (RfC) and inhalation slope factor (SF) were used.

RESULTS:

The air near the soil in 7 areas showed different degrees of pungent odors with the odor concentration (the dilution multiple required to dilute the odor gas with odorless air to just no odor) ranging from 309 to 72443. The odor in the production area had the largest impact range, reaching 3.2km; a total of 209 volatile organic compounds (VOCs) in the ambient air near the soil, and 246 VOCs and semi-volatile organic compounds (SVOCs) in the soil samples were identified, mainly including aromatic compounds, halogenated substances, alkanes and oxygenated organics; the main odor contribution types included organic sulfides, aromatic compounds and oxygen-containing organic matter; 7 areas near the soil and air all had carcinogenic risks (>1.0×10-4), and 5 areas had non-carcinogenic risks. The main carcinogens were 1, 4-dichlorobenzene, benzene, and carbon tetrachloride.

CONCLUSIONS:

The results of the continuous study on the analysis of odor components and the risk of disease and cancer in pesticide sites provide an important basis for the restoration of the ecological environment and the health protection of residents in the study area.

KEY WORDS: organophosphorus pesticide site, odor pollution, volatile organic compounds, semi-volatile organic compounds, gas chromatography high-resolution mass spectrometry, emission characteristics, health risk

HIGHLIGHTS

(1) Quantitative analysis and evaluation of pesticide odor pollutants were carried out using high-precision chromatography and odor contribution analysis.

(2) It was found that there was generally a human carcinogenic risk above the acceptable range at the monitoring points.

(3) It is important to note the potential relationship between high concentrations of pesticide odor pollutants and high risk of disease and cancer.

本文参考文献

[1]

盖利亚, 冯文娟, 丁艳梅, 等. 典型污染场地土壤农药含量的空间分布[J]. 地球与环境, 2014, 42(4): 484-488.

Gai L Y, Feng W J, Ding Y M, et al. Spatial distribution of soil pesticide content in typical contaminated sites[J]. Earth and Environment, 2014, 42(4): 484-488.

[2]

赵庆令, 安茂国, 陈洪年, 等. 济南市某废弃化工厂区域土壤地球化学特征研究[J]. 岩矿测试, 2018, 37(2): 201-208.

Zhao Q L, An M G, Chen H N, et al. Research on geochemical characteristics of soil in a chemical industrial factory site in Jinan City[J]. Rock and Mineral Analysis, 2018, 37(2): 201-208.

[3]

邢彤, 郑志侠, 赵纯真, 等. 某氨基酸厂搬迁场地土壤重金属污染特征及健康风险评价[J]. 绿色科技, 2020, (18): 57-61.

Xing T, Zheng Z X, Zhao C Z, et al. Soil heavy metal pollution characteristics and health risk assessment of the relocation site of an amino acid factory[J]. Green Science and Technology, 2020, (18): 57-61.

[4]

刘媛. 电镀企业搬迁后场地调查及其环境影响评价[J]. 岩矿测试, 2012, 31(4): 638-644. doi: 10.3969/j.issn.0254-5357.2012.04.014

Liu Y. Environmental survey and impact assessment on the relocation site of an electroplate factory[J]. Rock and Mineral Analysis, 2012, 31(4): 638-644. doi: 10.3969/j.issn.0254-5357.2012.04.014

[5]

郭观林, 王世杰, 施烈焰, 等. 某废弃化工场地VOC/SVOC污染土壤健康风险分析[J]. 安全与环境工程, 2021, 28(3): 162-169.

Guo G L, Wang S J, Shi L Y, et al. Health risk analysis of VOC/SVOC contaminated soil in an abandoned chemical plant[J]. Safety and Environmental Engineering, 2021, 28(3): 162-169.

[6] US EPA. Superfundremedy report fifteenth edition[M] . Charlestone: Createspace Independent Publishing Platform, 2017: 14
[7]

Ministry of the Environment Government of Japan. Environmental Quality Standards for Soil Pollution[EB/OL]. Japan: Ministry of the Environment Government, 1994[2021-12-09]. http://www.env.go.jp/en/water/soil/sp.html.

[8]

骆永明. 中国污染场地修复的研究进展问题与展望[J]. 环境监测管理与技术, 2011, 23(3): 1-6. doi: 10.3969/j.issn.1006-2009.2011.03.002

Luo Y M. Issues and prospects of the research progress of remediation of contaminated sites[J].Environmental Monitoring Management and Technology, 2011, 23(3): 1-6. doi: 10.3969/j.issn.1006-2009.2011.03.002

[9]

Harner T, Wideman J L, Jantunen L M M, et al. Residues of organochlorine pesticides in Alabama soils[J].Pollution, 1999, 106(3): 323-332. doi: 10.1016/S0269-7491(99)00110-4

[10]

朱国繁, 应蓉蓉, 叶茂, 等. 我国农药生产场地污染土壤修复技术研究进展[J]. 土壤通报, 2021, 52(2): 462-472.

Zhu G F, Ying R R, Ye M, et al. Research progress on remediation technology of contaminated soil in pesticide production sites in China[J]. Chinese Journal of Soil Science, 2021, 52(2): 462-472.

[11]

燕云仲. 挖掘扰动下污染场地空气中有机氯农药分布及风险评价[D]. 阜新: 辽宁工程技术大学, 2013.

Yan Y Z. Distribution andrisk assessment of organochlorine pesticides in the air of polluted sites under excavation disturbance[D]. Fuxin: Liaoning University of Engineering and Technology, 2013.

[12]

蘧丹, 姜世中, 唐阵武, 等. 废弃生产场地有机氯农药的残留与迁移特征[J]. 岩矿测试, 2013, 32(4): 135-144.

Qu D, Jiang S Z, Tang Z W, et al. Residues and migration characteristics of organochlorine pesticides in abandoned production sites[J]. Rock and Mineral Analysis, 2013, 32(4): 135-144.

[13]

王亘, 孟洁, 商细彬, 等. 国外恶臭污染管理办法对我国管理体系构建的启示[J]. 环境科学研究, 2018, 31(8): 1337-1345.

Wang G, Meng J, Shang X B, et al. The enlightenment of foreign odor pollution management methods to the construction of management system in my country[J]. Environmental Science Research, 2018, 31(8): 1337-1345.

[14]

Klenbusch M R. Measurement of gaseous emission rates from land surfaces using an emission isolation flux chamber[R]. Las Vegas Nevada USA: U.S. Environmental Protection Agency, 1986.

[15]

Capelli L, Sironi S, Rosso R D, et al. Measuring odours in the environment vs.dispersion modelling: A review[J].Atmospheric Environment, 2013, 79: 731-743. doi: 10.1016/j.atmosenv.2013.07.029

[16]

Wu C D, Brancher M, Yang F, et al. A comparative analysis of methods for determining odour-related separation distances around a dairy farm in Beijing, China[J].Atmosphere, 2019, 10(5): 231-246. doi: 10.3390/atmos10050231

[17]

German EPA. Detection and assessment of odour in ambient air: Guideline on odour in ambient air[EB/OL][2019-05-10]. https://www.lanuv.nrw.de/fileadmin/lanuv/luft/gerueche/pdf/GOAA10Sept08.pdf.

[18]

张妍, 荆博宇, 王亘, 等. 恶臭污染精准模拟的峰/均值因子研究进展[J]. 环境科学研究, 2018, 31(3): 428-434.

Zhang Y, Jing B Y, Wang G, et al. Research progress of peak/mean factors for accurate simulation of odor pollution[J].Environmental Science Research, 2018, 31(3): 428-434.

[19]

章霖之, 王荣俊, 丁倩, 等. 常州某农药生产场地土壤中挥发性有机物污染状况调查[J]. 中国环境监测, 2012, 28(3): 68-71.

Zhang L Z, Wang R J, Ding Q, et al. Investigation of volatile organic compound pollution in soil of a pesticide production site in Changzhou[J]. China Environmental Monitoring, 2012, 28(3): 68-71.

[20]

周裕敏, 郝郑平, 王海林, 等. 北京地区城乡结合部大气挥发性有机物污染及来源分析[J]. 环境科学, 2011, 32(12): 3560-3565.

Zhou Y M, Hao Z P, Wang H L, et al. Analysis on the pollution and source of volatile organic compounds in the atmosphere of the urban-rural fringe in Beijing area[J].Environmental Science, 2011, 32(12): 3560-3565.

[21]

曹文文, 史建武, 韩斌, 等. 我国北方典型城市大气中VOCs的组成及分布特征[J]. 中国环境科学, 2012, 32(2): 200-206. doi: 10.3969/j.issn.1000-6923.2012.02.002

Cao W W, Shi J W, Han B, et al. The composition and distribution characteristics of VOCs in the atmosphere of typical cities in northern my country[J].China Environmental Science, 2012, 32(2): 200-206. doi: 10.3969/j.issn.1000-6923.2012.02.002

[22]

徐锋, 钱晓曙, 孙志刚, 等. 绍兴市某工业区大气中挥发性有机物污染状况的研究[J]. 中国环境监测, 2011, 27(2): 45-47. doi: 10.3969/j.issn.1002-6002.2011.02.011

Xu F, Qian X S, Sun Z G, et al. Study on the pollution of volatile organic compounds in the atmosphere of an industrial zone in Shaoxing City[J].China Environmental Monitoring, 2011, 27(2): 45-47. doi: 10.3969/j.issn.1002-6002.2011.02.011

[23]

孙克. 农药合成与分析技术[M] . 北京: 化学工业出版社, 2015

Sun K. Pesticide synthesis and analysis technology[M] . Beijing: Chemical Industry Press, 2015
[24]

庞博, 王铁宇, 杜立宇, 等. 农药企业场地苯系物污染风险及调控对策[J]. 环境科学, 2013, 34(7): 2829-2836.

Pang B, Wang T Y, Du L Y, et al. Pollution risk of benzene series in pesticide enterprise site and control countermeasures[J]. Environmental Science, 2013, 34(7): 2829-2836.

[25]

张孝飞, 邓绍坡, 龙涛, 等. 农药污染场地修复过程中近地面大气气态污染物含量变化特征及影响因素[J]. 南京农业大学学报, 2017, 40(3): 481-487.

Zhang X F, Deng S P, Long T, et al. Variation characteristics and influencing factors of atmospheric gaseous pollutants near the ground during the restoration of pesticide-contaminated sites[J].Journal of Nanjing Agricultural University, 2017, 40(3): 481-487.

[26]

何龙庆, 林继成, 石冰, 等. 菲克定律与扩散的热力学理论[J]. 安庆师范学院学报(自然科学版), 2006, 12(4): 38-39. doi: 10.3969/j.issn.1007-4260.2006.04.014

He L Q, Lin J C, Shi B, et al. Fick's law and the thermodynamic theory of diffusion[J].Journal of Anqing Teachers College (Natural Science Edition), 2006, 12(4): 38-39. doi: 10.3969/j.issn.1007-4260.2006.04.014

[27]

Nagata Y. Measurement of odor threshold by triangle odor bag method[M]//Odor measurement review. Tokyo: Japan Ministry of The Environment, 2003: 118-127.

[28]

Capelli L, Sironi S, Del Rosso R, et al. A comparative and critical evaluation of odour assessment methods on a landfill site[J].Atmospheric Environment, 2008, 42(30): 7050-7058. doi: 10.1016/j.atmosenv.2008.06.009

[29]

赵岩, 陆文静, 王洪涛, 等. 城市固体废物处理处置设施恶臭污染评估指标体系研究[J]. 中国环境科学, 2014, 34(7): 1804-1810.

Zhao Y, Lu W J, Wang H T, et al. Research on the evaluation index system of odor pollution in municipal solid waste treatment and disposal facilities[J]. China Environmental Science, 2014, 34(7): 1804-1810.

[30]

US EPA. Integrated risk information system (IRIS)[EB/OL]. http://www.epa.gov/iris/index.html.2013.

[31]

段小丽, 聂静, 王宗爽, 等. 健康风险评价中人体暴露参数的国内外研究概况[J]. 环境与健康杂志, 2009, 26(4): 370-373.

Duan X L, Nie J, Wang Z S, et al. Human exposure factors in health risk assessment[J]. Journal of Environment and Health, 2009, 26(4): 370-373.

[32]

Sivret E C, Wang B, Parcsi G, et al. Prioritisation of odorants emitted from sewers using odour activity values[J]. Water Research, 2016, 88: 308-321.

[33]

Durmusoglu E, Taspinar F, Karademir A, et al. Health risk assessment of BTEX emissions in the landfill environment[J].Journal of Hazardous Materials, 2010, 176(1-3): 870-877. doi: 10.1016/j.jhazmat.2009.11.117

[34]

朱广瑾. 中国人群生理常数与心理状况[M] . 北京: 中国协和医科大学出版社, 2006: 219-250.

Zhu G J. Physiological constants and psychological conditions of the Chinese population[M] . Beijing: Peking Union Medical College Press, 2006: 219-250.
[35]

IARC. Inernationalagency for research on cancer (IARC)[EB/OL]. http://monographs.iarc.fr/ENG/Classification/2013.

[36]

US EPA. Risk assessment guidance for superfund volume Ⅰ: Human Health evaluation manual (Part A)[R]. Washington DC: US EPA Office of Emergency and Remedial Response, 1989.

相似文献(共20条)

[1]

李丽君, 王海娇, 马健生. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价. 岩矿测试, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105

[2]

郁建栓. 固相萃取-气相色谱/质谱法测定地面水中半挥发性有机物. 岩矿测试, 2006, 25(4): 331-333.

[3]

宋淑玲, 郭晓辰, 胡小键, 李鸿枝. 气相色谱-高分辨质谱联用测定地下水中16种典型痕量含氯持久性有机污染物. 岩矿测试, 2013, 32(2): 313-318.

[4]

李义, 董建芳, 张宇. 地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定. 岩矿测试, 2010, 29(5): 513-517.

[5]

冯丽, 李诚, 张彦, 张喜友. 吹扫捕集/气相色谱-质谱法测定地下水中30种挥发性有机物. 岩矿测试, 2012, 31(6): 1037-1042.

[6]

刘美美, 张小辉, 马娅妮, 李雪莹, 陶秋丽. 吹扫捕集-气相色谱-质谱联用法测定地下水中27种挥发性有机物. 岩矿测试, 2012, 31(3): 495-500.

[7]

赖永忠, 季彦鋆. 气相动态顶空进样-气相色谱-质谱法同时分析饮用水源水中57种挥发性有机物. 岩矿测试, 2012, 31(5): 877-883.

[8]

刘玉龙, 夏凡, 张洪志. 挥发性有机污染物标准物质使用的短期稳定性评价. 岩矿测试, 2012, 31(4): 647-652.

[9]

阎妮, 刘菲, 刘玉龙, 刘博. 土壤样品中挥发性有机物的提取方法研究. 岩矿测试, 2012, 31(1): 166-171.

[10]

左海英, 张琳, 刘菲, 桂建业. 水中挥发性有机物分析的影响因素和常见问题解决办法. 岩矿测试, 2013, 32(1): 124-127.

[11]

张永涛, 张莉, 张琳. 短程选择离子扫描气相色谱-质谱法检测水中15种半挥发性有机物. 岩矿测试, 2008, 27(6): 401-404.

[12]

陶文靖, 黄勤, 李胜生. 顶空进样-气相色谱-质谱法测定地下水中25种挥发性有机污染物. 岩矿测试, 2010, 29(5): 543-546.

[13]

李丽君, 汪寅夫, 王娜, 王海娇. 吹扫捕集-气相色谱/质谱法测定地下水中的挥发性有机物. 岩矿测试, 2010, 29(5): 547-551.

[14]

黄毅, 饶竹. 吹扫捕集气相色谱-质谱法测定全国地下水调查样品中挥发性有机污染物. 岩矿测试, 2009, 28(1): 15-20.

[15]

费勇, 姚恩亲, 张海燕, 徐云, 许健. 吹扫捕集-气相色谱/质谱联用同时测定饮用水源地水中痕量挥发性有机物. 岩矿测试, 2010, 29(2): 127-130.

[16]

李松, 饶竹. 地下水中12项半挥发性有机污染物测定的质量控制. 岩矿测试, 2009, 28(2): 157-160.

[17]

魏峰, 陈海英, 沈小明, 吕爱娟. 地下水中半挥发性有机污染物痕量分析的5个问题探讨. 岩矿测试, 2012, 31(6): 1043-1049.

[18]

余蕾, 张小毅. 气相色谱-三重四极杆质谱法测定地下水中44种有机物污染物. 岩矿测试, 2021, 40(3): 365-374. doi: 10.15898/j.cnki.11-2131/td.202008310120

[19]

贾静, 饶竹. 吹扫捕集-气相色谱/质谱法测定土壤中挥发性有机化合物. 岩矿测试, 2008, 27(6): 413-417.

[20]

张道来, 林学辉, 周明, 陈军辉, 杨佰娟, 夏宁, 王小如. 气相色谱-质谱法快速测定罗氏海盘车中6种邻苯二甲酸酯类有机污染物. 岩矿测试, 2012, 31(1): 159-165.

计量
  • PDF下载量(5)
  • 文章访问量(448)
  • HTML全文浏览量(167)
  • 被引次数(0)
目录

Figures And Tables

有机磷农药污染地块异味污染调查与健康风险评估

孟洁, 王静, 肖咸德, 张妍, 翟增秀, 李伟芳