【引用本文】 张弘, 高鹏鑫, 高卿楠, . 热红外反射光谱技术在石英含量评价中的应用[J]. 岩矿测试, 2021, 40(5): 710-719. doi: 10.15898/j.cnki.11-2131/td.202104190053
ZHANG Hong, GAO Peng-xin, GAO Qing-nan. Application of Thermal Infrared Reflectance Spectroscopy in the Evaluation of Quartz Content[J]. Rock and Mineral Analysis, 2021, 40(5): 710-719. doi: 10.15898/j.cnki.11-2131/td.202104190053

热红外反射光谱技术在石英含量评价中的应用

自然资源实物地质资料中心, 河北 三河 065201

收稿日期: 2021-04-19  修回日期: 2021-06-28  接受日期: 2021-07-28

基金项目: 中国地质调查局地质调查项目"油气地质调查钻井岩心保存参数采集与应用"(DD20201113)

作者简介: 张弘, 硕士, 工程师, 主要从事岩心光谱解译与应用研究。E-mail: 450865181@qq.com

通信作者: 高鹏鑫, 高级工程师, 主要从事实物地质资料管理研究。E-mai: 565611549@qq.com

Application of Thermal Infrared Reflectance Spectroscopy in the Evaluation of Quartz Content

Core and Samples Centre of Land and Resources, Sanhe 065201, China

Corresponding author: GAO Peng-xin, 565611549@qq.com

Received Date: 2021-04-19
Revised Date: 2021-06-28
Accepted Date: 2021-07-28

摘要:石英是热液矿床重要的找矿标志,也是影响页岩气储层可压裂性评价的关键性因素,目前主要利用X射线衍射方法和扫描电镜矿物定量分析方法进行实验室内石英定量分析。为满足野外钻井现场进行快速、大批量矿物定量分析的需求,本文以羌塘盆地泥岩、砂岩、砾岩、灰岩和白云岩等沉积岩样品为研究对象,应用热红外反射光谱技术和综合自动矿物岩石学(QEMSCAN)矿物定量分析技术,开展了石英热红外反射光谱含量评价研究。结果表明:石英在8625nm、12640nm和14450nm三个特征中心波长位置的相对深度(D8625D12640D14450)可以用来区分陆源碎屑岩和碳酸盐岩,当D8625>0.14或D12640>0.02或D14450>0.02时,样品岩性主要为陆源碎屑岩,否则主要为碳酸盐岩。此外,D8625D12640D14450三个石英光谱特征参数均与石英含量具有高度的相关性,均可以利用最小二乘法构建石英含量评价模型。以拟合优度(R2)和均方根误差(RMSE)两个指标评价三个模型的精度,其中根据D8625参数建立的石英含量估算模型的拟合优度最大(R2=0.9237),且均方根误差最小(RMSE=8.51),基于此认为D8625石英光谱参数可以作为评价石英含量的最优光谱指标。本文基于热红外反射光谱技术建立的该种野外快速估算钻井中石英含量的方法,为热液矿床找矿勘查和页岩气勘探开发提供了借鉴和参考。

关键词: 热红外反射光谱, 石英含量评价, 石英光谱特征参数, 线性回归分析

要点

(1) 利用热红外反射光谱技术和QEMSCAN矿物定量分析技术建立石英含量评价模型。

(2) 利用石英的光谱特征参数(D8625D12640D14450)可以用来区分陆源碎屑岩和碳酸盐岩。

(3) 根据D8625参数建立的石英含量估算模型的线性拟合效果好,精度高,可以作为评价石英含量的最优光谱指标。

Application of Thermal Infrared Reflectance Spectroscopy in the Evaluation of Quartz Content

ABSTRACT

BACKGROUND:

Quartz is not only an important prospecting indicator of hydrothermal deposits, but also a key factor affecting the evaluation of shale gas reservoir fracturing. It is of great significance to carry out the rapid evaluation of quartz content in field drilling. However, the analysis process of conventional methods (X-ray diffraction method and scanning electron microscope) is relatively long.

OBJECTIVES:

To establish a rapid and large-scale quantitative evaluation model of quartz based on thermal infrared reflectance.

METHODS:

Handheld FTIR spectrometer and mineral quantitative analyzer were used to analysis the content and characteristic absorption peak intensity of quartz, from mudstone, sandstone, conglomerate, limestone and dolomite samples in the Qiangtang Basin.

RESULTS:

The relative depth (D8625, D12640, D14450) of quartz at the three characteristic center wavelength positions of 8625nm, 12640nm and 14450nm can be used to distinguish terrigenous clastic rocks from carbonate rocks. When D8625>0.14 or D12640>0.02 or D14450>0.02, the samples are mainly terrigenous clastic rocks. In addition, three quartz spectral characteristic parameters D8625, D12640, and D14450 all have a high correlation with the quartz content, and the least square method can be used to construct a quartz content evaluation model. Two indicators of goodness of fit (R2) and root mean square error (RMSE) were used to evaluate the accuracy of the three models. Among them, the quartz content estimation model based on D8625 parameters had the highest goodness of fit (R2=0.9237), with the smallest root square error (RMSE=8.51). Based on this, it is believed that the D8625 quartz spectral parameters can be used as the optimal spectral index for evaluating the quartz content.

CONCLUSIONS:

Based on thermal infrared reflectance spectroscopy technology, a field method for quickly estimating the content of quartz in drilling core has been established, which provides reference for prospecting and exploration of hydrothermal deposits and shale gas exploration and development.

KEY WORDS: thermal infrared reflectance spectroscopy, quantitative evaluation of quartz, spectral characteristic parameters of quartz, linear regression analysis

HIGHLIGHTS

(1) A quantitative evaluation model of quartz content was established by using thermal infrared reflectance spectroscopy and QEMSCAN mineral quantitative analysis technology.

(2) The spectral characteristic parameters of quartz (D8625, D12640 and D14450) can be used to distinguish terrigenous clastic rocks from carbonate rocks.

(3) The quartz content estimation model based on the D8625 parameter has the best linear fitting effect and the highest accuracy. It can also be used as the optimal spectral index for quartz content evaluation.

本文参考文献

[1]

郭帮杰, 张杰林, 武鼎, 等. 热红外高光谱遥感回归分析定量反演石英含量[J]. 科学技术与工程, 2018, 18(17): 125-130. doi: 10.3969/j.issn.1671-1815.2018.17.021

Guo B J, Zhang J L, Wu D, et al. Thermal hyperspectral remote rensing for the quantitative inversion of quartz content by regression analysis[J].Science Technology and Engineering, 2018, 18(17): 125-130. doi: 10.3969/j.issn.1671-1815.2018.17.021

[2]

陈静, 周涛发, 张乐骏, 等. 蚀变岩帽的特征、成因以及在华南的分布探讨[J]. 岩石学报, 2020, 36(11): 3380-3396. doi: 10.18654/1000-0569/2020.11.08

Chen J, Zhou T F, Zhang L J, et al. A discussion of characteristics, genesis of lithocaps and their distributions in South China[J].Acta Petrologica Sinica, 2020, 36(11): 3380-3396. doi: 10.18654/1000-0569/2020.11.08

[3]

崔霄峰, 张宇, 李肖龙, 等. 内蒙古喀喇沁旗安家营子金矿蚀变及其分布研究[J]. 地质与勘探, 2021, 57(1): 1-13. doi: 10.3969/j.issn.1001-1986.2021.01.001

Cui X F, Zhang Y, Li X L, et al. Alteration and distribution of Anjiayingzi gold deposit in Harqin Banner, Inner Mongolia[J].Geology and Exploration, 2021, 57(1): 1-13. doi: 10.3969/j.issn.1001-1986.2021.01.001

[4]

金露英, 秦克章, 李光明, 等. 斑岩钼-热液脉状铅锌银矿成矿系统特征、控制因素及勘查指示[J]. 岩石学报, 2020, 36(11): 3813-3839.

Jin L Y, Qin K Z, Li G M, et al. Characteristics, controlling factors and exploration implications of porphyry molybdenum-hydrothermal vein-style lead-zinc-silver metallogenic systems[J]. Acta Petrologica Sinica, 2020, 36(11): 3813-3839.

[5]

孙雨沁, 于学峰, 单伟, 等. 胶东焦家断裂带3000m深部矿化特征及金矿物赋存状态[J]. 地球学报, 2020, 41(6): 919-937.

Sun Y Q, Yu X F, Dan W, et al. Mineralization characteristics and modes of occurrence of gold minerals at the depth of 3000 meters in Jiaojia fault zone, Jiaodong Peninsula[J]. Acta Geoscientia Sinica, 2020, 41(6): 919-937.

[6]

于立栋, 张海微, 张静, 等. 东天山玉峰金矿热液蚀变作用与元素迁移规律[J]. 岩石学报, 2020, 36(5): 1597-1610.

Yu L D, Zhang H W, Zhang J, et al. Hydrothermal alteration and element migration in the Yufeng gold deposit, Eastern Tianshan Orogen[J]. Acta Petrologica Sinica, 2020, 36(5): 1597-1610.

[7]

张海坤, 胡鹏, 姜军胜, 等. 印度尼西亚苏门答腊岛马塔比(Martabe)浅成低温热液型金-银矿床的地质特征与找矿标志[J]. 高校地质学报, 2021, 27(2): 163-171.

Zhang H K, Hu P, Jiang J S, et al. Geological features and prospecting indicators of martabe epithermal Au-Ag deposit, Sumatra, Indonesia[J]. Geological Journal of China Universities, 2021, 27(2): 163-171.

[8]

田兴旺, 胡国艺, 苏桂萍, 等. 川南威远川南威远地区W201井古生界海相页岩矿物特征[J]. 新疆石油地质, 2018, 39(4): 409-415.

Tian X W, Hu G Y, Su G P, et al. Mineralogical characteristics of Paleozoic marine shales in Well W201 of Weiyuan area, Southern Sichuan Basin[J]. Xinjiang Petroleum Geology, 2018, 39(4): 409-415.

[9]

卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰-龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465.

Lu L F, Qin J Z, Shen B J, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465.

[10]

孙川翔, 聂海宽, 刘光祥, 等. 石英矿物类型及其对页岩气富集开采的控制: 以四川盆地及其周缘五峰组-龙马溪组为例[J]. 地球科学, 2019, 44(11): 3692-3704.

Sun C X, Nie H K, Liu G X, et al. Quartz type and its control on shale gas enrichment and production: A case study of the Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas, China[J]. Earth Science, 2019, 44(11): 3692-3704.

[11]

郭雯, 董大忠, 李明, 等. 富有机质页岩中石英的成因及对储层品质的指示意义——以四川盆地东南部及周缘龙马溪组龙-1亚段为例[J]. 天然气工业, 2021, 41(2): 65-74.

Guo W, Dong D Z, Li M, et al. Quartz genesis in organic-rich shale and its indicative significance to reservoir quality: A case study on the first submember of the first member of Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(2): 65-74.

[12]

陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345-368.

Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its applicati-ion in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345-368.

[13]

温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121-129.

Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121-129.

[14]

伍月, 迟广成, 刘欣, 等. X射线粉晶衍射法在变粒岩鉴定与分类中的应用[J]. 岩矿测试, 2020, 39(4): 546-554.

Wu Y, Chi G C, Liu X, et al. Application of X-ray powder diffraction method in identification and classification of leptite[J]. Rock and Mineral Analysis, 2020, 39(4): 546-554.

[15]

闫柏琨, 王润生, 甘甫平, 等. 热红外遥感信息岩矿信息提取研究进展[J]. 地球科学进展, 2005, 20(10): 1116-1126. doi: 10.3321/j.issn:1001-8166.2005.10.011

Yan B K, Wang R S, Gan F P, et al. Progresses in minerals information extraction using thermal remote sensing[J].Advances in Earth Science, 2005, 20(10): 1116-1126. doi: 10.3321/j.issn:1001-8166.2005.10.011

[16]

代晶晶, 赵龙贤, 姜琪, 等. 热红外高光谱技术在地质找矿中的应用综述[J]. 地质学报, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

Dai J J, Zhao L X, Jiang Q, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration[J].Acta Geologica Sinica, 2020, 94(8): 2520-2533. doi: 10.3969/j.issn.0001-5717.2020.08.026

[17]

Van der Meer F D, Van der Werff H M F, Van der Ruitenbeek F J K, et al. Multi-and hyperspectral geologic remote sensing: A review[J].International Journal of Applied Earth Observation and Geoinfor-mation, 2012, 14(1): 112-128. doi: 10.1016/j.jag.2011.08.002

[18]

Arne D, House E, Pontual S, et al. Hyperspectral interpretation of selected drill cores from orogenic gold deposits in central Victoria, Australia[J]. Australian Journal of Earth Sciences, 2016, 63(8): 1003-1025.

[19]

Cudahy T. Mineral mapping for exploration: An Australian journey of evolving spectral sensing technologies and industry collaboration[J]. Geosciences, 2016, 6(4): 2076-3263.

[20]

Laukamp C, Rodger A, LeGras M, et al. Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra[J]. Minerals, 2021, 11(4): 1-37.

[21]

Lampinen H M, Laukamp C, Occhipinti S A, et al. Mineral footprints of the Paleoproterozoic sediment-hosted Abra Pb-Zn-Cu-Au deposit Capricorn Orogen, western Australia[J].Ore Geology Reviews, 2019, 104: 436-461. doi: 10.1016/j.oregeorev.2018.11.004

[22]

Tappert M C, Rivard B, Giles D, et al. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia[J].Ore Geology Reviews, 2013, 53: 26-38. doi: 10.1016/j.oregeorev.2012.12.006

[23]

史维鑫, 易锦俊, 王浩, 等. 马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究[J]. 岩矿测试, 2020, 39(6): 934-943.

Shi W X, Yi J J, Wang H, et al. Study on the characteristics of the infrared spectrum and the alteration zoning of drill core in the Makeng iron deposit[J]. Rock and Mineral Analysis, 2020, 39(6): 934-943.

[24]

Bastero C F, Lagmay A M F A. Estimating SiO2 content of lava depositsin the humid tropics using remotely sensed imagery[J].Journal of Volcanology and Geothermal Research, 2006, 151(4): 357-364. doi: 10.1016/j.jvolgeores.2005.09.012

[25]

Guo B J, hang J L. Airborne hyperspectral remote sensing technology for polymetallic ore and uranium deposits exploration in East Junggar[J]. Acta Geolagica Sinica (Engish Edition), 2014, 88(Supplement 2): 1347-1348.

[26]

杜锦锦, 王俊虎, 郎朋林, 等. 基于102F实测热红外光谱的富硅类岩石SiO2含量定量反演[J]. 世界核地质科学, 2016, 33(4): 216-222. doi: 10.3969/j.issn.1672-0636.2016.04.005

Du J J, Wang J H, Lang P L, et al. Quantitative inversion of SiO2 contents in silicon rich rocks based on measured 102F thermal infrared spectra[J].World Nuclear Geoscience, 2016, 33(4): 216-222. doi: 10.3969/j.issn.1672-0636.2016.04.005

[27]

郭帮杰, 张杰林, 武鼎, 等. 高光谱遥感在硅化带识别中的应用[J]. 科学技术与工程, 2007, 11(4): 601-608. doi: 10.3969/j.issn.1671-1815.2007.04.044

Guo B J, Zhang J L, Wu D, et al. Application of hyperspectral remote sensing in silicified zone identification[J].Science Technology and Engineering, 2007, 11(4): 601-608. doi: 10.3969/j.issn.1671-1815.2007.04.044

[28]

刘道飞, 陈圣波, 陈磊, 等. 以SiO2含量为辅助因子的ASTER热红外遥感硅化信息提取[J]. 地球科学——中国地质大学学报, 2015, 40(8): 1396-1402.

Liu D F, Chen S B, Chen L, et al. Silicification information extraction based on the content of SiO2 from ASTER TIR data[J]. Earth Science (Journal of China University of Geosciences), 2015, 40(8): 1396-1402.

[29]

王剑, 付修根, 沈利军, 等. 论羌塘盆地油气勘探前景[J]. 地质论评, 2020, 66(5): 1091-1113.

Wang J, Fu X G, Shen L J, et al. Prospect of the potential of oil and gas resources in Qiangtang Basin, Xizang (Tibet)[J]. Geological Review, 2020, 66(5): 1091-1113.

[30]

回广骥, 高卿楠, 宋利强, 等. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征[J]. 岩矿测试, 2021, 40(1): 134-144.

Hui G J, Gao Q N, Song L Q, et al. Thermal infrared spectra characteristics of rare metal minerals and rock in the Keketuohai deposit, Xinjiang[J]. Rock and Mineral Analysis, 2021, 40(1): 134-144.

[31]

张弘, 高卿楠, 郭东旭, 等. 花岗伟晶岩型锂矿热红外反射光谱特征及锂元素定量反演研究[J]. 矿物岩石, 2011, 41(1): 25-31.

Zhang H, Gao Q N, Guo D X, et al. Characteristics of thermal infrared reflectance spectra and quantitative inversion of lithium element in granite pegmatite type lithium deposit[J]. Mineralogy and Petrology, 2011, 41(1): 25-31.

[32]

李俊键, 成宝洋, 刘仁静, 等. 基于数字岩心的孔隙尺度砂砾岩水敏微观机理[J]. 石油学报, 2019, 40(5): 594-603.

Li J J, Cheng B Y, Liu R J, et al. Microscopic mechanism of water sensitivity of pore-scale sandy conglomerate based on digital core[J]. Acta Petrolei Sinica, 2019, 40(5): 594-603.

[33]

吕文超, 杨志军, 周永章, 等. 钦杭结合带南段和寮铅锌多金属矿床石英的谱学特征及其指示意义[J]. 光谱学与光谱分析, 2013, 33(5): 1374-1378. doi: 10.3964/j.issn.1000-0593(2013)05-1374-05

Lv W C, Yang Z J, Zhou Y Z, et al. Spectral characteristics and implications of quartz from Heliao lead-zinc polymetallic ore district in the south of Qinzhou-Hangzhou joint belt[J].Spectroscopy and Spectral Analysis, 2013, 33(5): 1374-1378. doi: 10.3964/j.issn.1000-0593(2013)05-1374-05

[34]

尤金凤, 邢立新, 潘军, 等. 油砂光谱特性及其含油率遥感估算研究[J]. 光谱学与光谱分析, 2015, 35(4): 1025-1029. doi: 10.3964/j.issn.1000-0593(2015)04-1025-05

You J F, Xing L X, Pan J, et al. Research on oil sands spectral characteristics and oil content by remote sensing estimation[J].Spectroscopy and Spectral Analysis, 2015, 35(4): 1025-1029. doi: 10.3964/j.issn.1000-0593(2015)04-1025-05

[35]

樊瑞雪, 邢立新, 潘军, 等. 油砂的光谱特性及其遥感应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 603-610.

Fan R X, Xing L X, Pan J, et al. Oil sands spectral reflection characteristics and remote sensing application[J].Journal of Jilin University (Earth Science Edition), 2019, 49(2): 603-610.

[36]

成功, 李嘉璇, 王朝鹏, 等. 离子型稀土矿含量高光谱定量反演研究[J]. 光谱学与光谱分析, 2019, 39(5): 1571-1578.

Cheng G, Li J X, Wang C P, et al. Study on hyperspectral quantitative inversion of ionic rare earth ore[J].Spectroscopy and Spectral Analysis, 2019, 39(5): 1571-1578.

相似文献(共20条)

[1]

龙梅 裴世桥. 近红外反射光谱学在岩石矿物研究中的应用Ⅱ.快速测定地质样品中有机质. 岩矿测试, 2004, (1): 6-10.

[2]

裴世桥, 龙梅. 近红外反射光谱学在岩石矿物研究中的应用——Ⅰ.快速测定地质样品中化合水. 岩矿测试, 2003, (3): 169-173.

[3]

龙梅, 裴世桥. 近红外反射光谱学在岩石矿物研究中的应用Ⅲ.快速测定地质样品中二氧化碳. 岩矿测试, 2005, (1): 26-30.

[4]

尚文郁, 孙青, 凌媛, 谢曼曼, 岑况. 近红外漫反射光谱在沉积物化学成分分析中的研究进展. 岩矿测试, 2012, 31(4): 582-590.

[5]

武中臣, 熊智新, 张淑宁, 王海东, 张鹏彦, 贾滨, 贺守波, 高虎, 杨田林. 傅立叶变换中红外漫反射光谱法定量检测褐煤的六个关键指标. 岩矿测试, 2008, 27(5): 346-348.

[6]

方飚, 严雪俊, 孙青, 吴静怡, 李淑华, 严俊. 应用扫描电镜-红外与反射光谱研究海水灰色Akoya珍珠特异的矿化微结构特征. 岩矿测试, 2021, 40(1): 42-49. doi: 10.15898/j.cnki.11-2131/td.201908200124

[7]

周丹怡, 陈华, 陆太进, 柯捷, 何明跃. 基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系. 岩矿测试, 2015, 34(6): 652-658. doi: 10.15898/j.cnki.11-2131/td.2015.06.008

[8]

傅碧宏. 碳酸盐岩的反射光谱特征的研究及应用. 岩矿测试, 1996, (3): 207-209.

[9]

回广骥, 高卿楠, 宋利强, 孙东询. 新疆可可托海稀有金属矿床矿物和岩石热红外光谱特征. 岩矿测试, 2021, 40(1): 134-144. doi: 10.15898/j.cnki.11-2131/td.202005060001

[10]

佟柏龄, 徐维并. 反射红外光谱法研究改性超滤膜. 岩矿测试, 1999, (2): 113-116.

[11]

夏心泉, 赵书林. 多波长数据线性回归光度法同时测定痕量钼和钛. 岩矿测试, 1993, (2): 152-154.

[12]

魏晶晶, 薛秋红, 刘心同, 单宝田, 丁玉龙. 电感耦合等离子体发射光谱法测定石英砂中15种杂质元素. 岩矿测试, 2011, 30(3): 310-314.

[13]

刘艳, 曾静, 胡军凯, 李玉琴, 冯朝军. X射线荧光光谱法测定含金石英石中7种成分. 岩矿测试, 2011, 30(5): 580-583.

[14]

冉敬, 杜谷, 潘忠习. 衰减全反射-傅里叶红外光谱法快速测试干酪根样品. 岩矿测试, 2010, 29(2): 113-117.

[15]

辛仁轩, 王建晨. 电荷注入检测器—等离子体光谱仪光度精度与分析参数的关系. 岩矿测试, 2000, (3): 177-179.

[16]

尚文郁, 谢曼曼, 王淑贤, 孙青, 岑况. 应用近红外光谱法研究泻湖湿地沉积物重金属活动态特征及生态风险评价. 岩矿测试, 2020, 39(4): 597-608. doi: 10.15898/j.cnki.11-2131/td.202001010001

[17]

褚人才, 陈恒武, 吴德秀. 无载气氢化物发生-石英缝管捕集原子吸收光谱法测定地质试样中的铋. 岩矿测试, 1994, (4): 298-301.

[18]

鲁青庆. 微波消解-火焰原子吸收光谱法测定石英砂中的氧化钙和氧化镁. 岩矿测试, 2005, (4): 314-316.

[19]

陈国能, 彭卓伦, 杨志军. 硬玉微区显微红外光谱分析. 岩矿测试, 2006, 25(3): 226-228.

[20]

李天顺, 李莉萍. 红外光谱定量测定硅灰石矿中矿物含量. 岩矿测试, 1992, (3): 232-235.

计量
  • PDF下载量(14)
  • 文章访问量(2585)
  • HTML全文浏览量(744)
  • 被引次数(0)
目录

Figures And Tables

热红外反射光谱技术在石英含量评价中的应用

张弘, 高鹏鑫, 高卿楠