【引用本文】 胡志中, 王坤阳, 晏雄, 等. 锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究[J]. 岩矿测试, 2020, 39(6): 804-815. doi: 10.15898/j.cnki.11-2131/td.201909210135
HU Zhi-zhong, WANG Kun-yang, YAN Xiong, et al. Study on the Morphology of Zircon-bearing Epoxy Resin Surface and Its Effect for LA-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2020, 39(6): 804-815. doi: 10.15898/j.cnki.11-2131/td.201909210135

锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究

中国地质调查局成都地质调查中心, 四川 成都 610081

收稿日期: 2019-09-21  修回日期: 2020-02-07  接受日期: 2020-05-13

作者简介: 胡志中, 硕士, 工程师, 主要从事微区原位分析。E-mail:hzz_pot@aliyun.com

通信作者: 杜谷, 硕士, 教授级高级工程师, 主要从事岩石、矿物分析研究。E-mail:dugucgs@163.com

Study on the Morphology of Zircon-bearing Epoxy Resin Surface and Its Effect for LA-ICP-MS Analysis

Chengdu Center of Geological Survey, China Geological Survey, Chengdu 610081, China

Corresponding author: DU Gu, dugucgs@163.com

Received Date: 2019-09-21
Revised Date: 2020-02-07
Accepted Date: 2020-05-13

摘要:激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)是目前锆石研究常用方法之一,该法普遍采用环氧树脂靶为载体,对锆石环氧树脂靶表面形貌及平整度影响进行研究,有助于评估其制作工艺以及LA-ICP-MS锆石分析的准确性。本次研究采用原子力显微镜(AFM)对锆石环氧树脂靶表面进行形貌分析,并通过分析和对比193nm激光不同剥蚀模式和不同剥蚀条件下的锆石表面形貌,研究锆石表面形貌及平整度对LA-ICP-MS锆石分析的影响;同时实验采用氩离子抛光技术对锆石环氧树脂靶进行二次抛光,并探讨该技术对锆石环氧树脂靶影响。实验结果表明本次靶中表面总体平整性较好但存在细微的不平,锆石表面存在程度较小(几至几十纳米的不等)的擦痕,锆石颗粒边缘与靶面存在高差和间隙;而通过研究后认为锆石表面细微的不平对于分析的影响小于能量密度、频率、移动速率等其他激光参数的影响,对分析准确性的影响较小。实验分析并对比了锆石和玻璃标准等不同基体的线扫描形貌,发现其剥蚀深度以及剥蚀形貌存在差异,相同剥蚀条件下线扫描剥蚀深度:NIST610 > CGSG系列>锆石91500。经氩离子二次抛光后锆石样品表面擦痕不明显,但可能会对锆石造成损伤等影响。本次研究认为锆石环氧树脂靶表面总体平整性较好,锆石表面细微的不平对分析准确性的影响较小,不同基体的线扫描形貌研究则为LA-ICP-MS锆石及其他分析提供了参考,而氩离子抛光技术对LA-ICP-MS分析的影响及应用还有待进一步的研究。

关键词: 锆石环氧树脂靶, 原子力显微镜, 氩离子抛光技术, 表面形貌, 激光剥蚀电感耦合等离子体质谱法

要点

(1) 采用原子力显微镜(AFM)揭示了锆石环氧树脂靶表面的形貌特征。

(2) LA-ICP-MS分析不同剥蚀模式和剥蚀条件下的锆石表面形貌。

(3) 探讨了氩离子抛光技术对锆石环氧树脂靶的影响。

Study on the Morphology of Zircon-bearing Epoxy Resin Surface and Its Effect for LA-ICP-MS Analysis

ABSTRACT

BACKGROUND:

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is currently one of the commonly used methods for zircon research. This method generally uses epoxy resin targets as carriers. Studying the effect of the surface morphology and flatness of epoxy resin targets helps to evaluate its production process and the accuracy of LA-ICP-MS zircon analysis.

OBJECTIVES:

To study the influence of the surface morphology of epoxy resin for zircon analysis by LA-ICP-MS.

METHODS:

Atomic force microscope (AFM) was used to analyze the surface morphology of zircon epoxy resin target, and the zircon surface morphology was studied by analyzing and comparing the zircon surface morphology under different ablation modes and different ablation conditions of 193nm laser. The influence of flatness on LA-ICP-MS zircon analysis was discussed. Argon ion polishing technology was used to perform secondary polishing on the zircon epoxy resin target, and the influence of this technology on the zircon epoxy resin target was investigated.

RESULTS:

The surface of the zircon epoxy resins was generally smooth but slightly uneven. There were scratches from a few to tens nm on the surface of the zircon. The differences in height and gaps existed between zircons and epoxy resin. The slightly uneven surface had less impact on the analysis accuracy than other laser parameters such as energy density, frequency and movement rate. The depth and morphology of different matrices by linear scanning were dissimilar. The scanning depths on the NIST610, CGSG series, zircon 91500 decreased under the same laser condition. The scratches of zircon surface were not obvious after Ar-ion milling, but the zircons may have been damaged.

CONCLUSIONS:

The surface morphology of zircon epoxy resins has less impact on the analysis accuracy for LA-ICP-MS. The influence and application of Ar-ion milling for LA-ICP-MS needs further study.

KEY WORDS: zircon in epoxy resin, atomic force microscope, the Ar-ion milling technology, the morphology of surface,

HIGHLIGHTS

(1) The surface morphology of zircon-bearing epoxy resins was characterized by AFM.

(2) The surface morphologies of zircon were investigated under different LA-ICP-MS conditions and modes.

(3) The effect of Ar-ion milling on zircon-bearing epoxy resins was discussed.

本文参考文献

[1]

范晨子, 胡明月, 赵令浩, 等. 锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展[J]. 岩矿测试, 2012, 31(1): 29-46.

Fan C Z, Hu M Y, Zhao L H, et al. Advances in situ microanalysis of U-Pb zircon geochronology using laser ablation-inductively coupled plasma-mass spectro-metry[J].Rock and Mineral Analysis, 2012, 31(1): 29-46.

[2]

Schaltegger U, Schmitt A K, Horstwood M S A, et al. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS:Recipes, interpretations, and opportunities[J].Chemical Geology, 2015, 402: 89-110.

[3]

Kosler J. Present trends and the future of zircon in geochronology:Laser ablation ICPMS[J].Reviews in Mineralogy and Geochemistry, 2003, 53(1): 243-275.

[4]

刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(32): 3863-3878.

Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32): 3863-3878.

[5]

Hu Z C, Liu Y S, Gao S, et al. "Wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2012, 78: 50-57.

[6]

Xie L W, Xu L, Yin Q L, et al. A novel sample cell for reducing the "position effect" in laser ablation MC-ICP-MS isotopic measurements[J].Journal of Analytical Atomic Spectrometry, 2018, 33: 1571-1578.

[7]

西尔维斯特著.林守麟译.地球科学中的激光剥蚀-ICPMS原理和应用[M].北京: 地质出版社, 2003.

Sylvester P (Editor).Lin S L (Translator).Principles and applications of laser-ablation-ICPMS in the Earth sciences[M].Beijing: Geological Publishing House, 2003.

[8]

许雅雯, 王家松, 郭虎, 等. U-Pb同位素测年新方法-激光烧蚀等离子体质谱法直接测定探针片中锆石和磷灰石年龄[J]. 地质调查与研究, 2015, 38(1): 67-76.

Xu Y W, Wang J S, Guo H, et al. A new method of U-Pb isotopic dating:In polished thin section U-Pb dating of zircon, apatite using laser ablation-MC-ICP-MS[J].Geological Survey and Research, 2015, 38(1): 67-76.

[9]

Zong K Q, Liu Y S, Gao C G, et al. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite:Refining constraints on the ultra-high pressure metamorphism of the Sulu terrane[J].Chemical Geology, 2010, 269: 237-251.

[10]

Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin, 2010, 55(15): 1535-1546.

[11]

宋彪. 用SHRIMP测定锆石U-Pb年龄的工作方法[J]. 地质通报, 2015, 34(10): 1777-1788.

Song B. SHRIMP zircon U-Pb age measurement:Sample preparation, measurement, data processing and explanation[J].Geological Bulletin of China, 2015, 34(10): 1777-1788.

[12]

Tang G Q, Li X H, Li Q L, et al. Deciphering the physical mechanism of the topography effect for oxygen isotope measurements using a Cameca IMS-1280 SIMS[J].Journal of Analytical Atomic Spectrometry, 2015, 30: 950-956.

[13]

Kita N T, Huberty J M, Kozdon R, et al. High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials:Accuracy, surface topography and crystal orientation[J].Surface and Interface Analysis, 2011, 43(1-2): 427-431.

[14]

刘延辉, 王弘, 孙大亮, 等. 原子力显微镜及其在各个研究领域的应用[J]. 科技导报, 2003, 21(3): 9-12.

Liu Y H, Wang H, Sun D L, et al. An atomic force microscope and its application[J].Science and Technology Review, 2003, 21(3): 9-12.

[15]

Yang J, Gong M H, Wang X T, et al. Observation and characterization of asphalt microstructure by atomic force microscopy[J].Journal of Southeast University (English Edition), 2014, 30(3): 353-357.

[16]

王亮, 章雄冬, 曹海虹, 等. 页岩的氩离子抛光制样研究[J]. 石油实验地质, 2015, 37(4): 525-529.

Wang L, Zhang X D, Cao H H, et al. Shale preparation using Ar-ion milling[J].Petroleum Geology and Experiment, 2015, 37(4): 525-529.

[17]

Hu M Y, Fan X T, Stoll B, et al. Preliminary characterisation of new reference materials for microanalysis:Chinese geological standard glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5[J].Geostandards and Geoanalytical Research, 2011, 35(2): 235-251.

[18]

Jochum K P, Nohl U, Herwig K, et al. GeoReM:A new geochemical database for reference materials and isotopic standards[J].Geostandards and Geoanalytical Research, 2005, 29(3): 333-338.

[19]

Yang F, Sun J G, Wang Y, et al. Geology, geochronology and geochemistry of Weilasituo Sn-polymetallic deposit in Inner Mongolia, China[J].Minerals, 2019, 9(2): 104.

[20]

Zhang W F, Xia X P, Zhang Y Q, et al. A novel sample preparation method for ultra-high vacuum (UHV) secondary ion mass spectrometry (SIMS) analysis[J].Journal of Analytical Atomic Spectrometry, 2018, 33(9): 1559-1563.

[21]

赵令浩, 孙冬阳, 胡明月, 等. 激光剥蚀电感耦合等离子体质谱小激光斑束线扫描定量分析技术[J]. 分析化学, 2018, 46(6): 931-937.

Zhao L H, Sun D Y, Hu M Y, et al. Line scanning quantitative analysis by laser ablation inductively coupled plasma mass spectrometry with small laser beam[J].Chinese Journal of Analytical Chemistry, 2018, 46(6): 931-937.

[22]

朱碧, 朱志勇, 吕苗, 等. Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J]. 岩矿测试, 2017, 36(1): 14-21.

Zhu B, Zhu Z Y, Lü M, et al. Application of iolite in data reduction of laser ablation inductively coupled plasms-mass spectrometry line-scan analysis[J].Rock and Mineral Analysis, 2017, 36(1): 14-21.

[23]

Li Z, Hu Z C, Liu Y S, et al. Accurate determination of elements in silicate glass by nanosecond and femtosecond laser ablation ICP-MS at high spatial resolution[J].Chemical Geology, 2015, 400: 11-23.

[24]

王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609-619.

Wang H, Wang F Y, Guan B T, et al. Effect of laser energy density on data quality during LA-ICP-MS measurement[J].Rock and Mineral Analysis, 2019, 38(6): 609-619.

[25]

吴石头, 许春雪, KlausS, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451-459.

Wu S T, Xu C X, Klaus S, et al. Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J].Rock and Mineral Analysis, 2017, 36(5): 451-459.

[26]

Liu X, Du D, Mourou G, et al. Laser ablation and micromachining with ultrashort laser pulses[J].IEEE Journal of Quantum Electronics, 1997, 33(10): 1706-1716.

[27]

Durrant S F. Laser ablation inductively coupled plasma mass spectrometry:Achievements, problems, prospects[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1385-1403.

[28]

杨文武, 史光宇, 商琦, 等. 飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J]. 光谱学与光谱分析, 2017, 37(7): 208-214.

Yang W W, Shi G Y, Shang Q, et al. Applications of femtosecond (fs) laser ablation-inductively coupled plasma-mass spectrometry in Earth sciences[J].Spectroscopy and Spectral Analysis, 2017, 37(7): 208-214.

[29]

Fernández B, Claverie F, Pécheyran C, et al. Direct analysis of solid samples by fs-LA-ICP-MS[J].Trends in Analytical Chemistry, 2007, 26(10): 951-966.

[30]

王辉, 汪方跃, 盛兆秋, 等. LA-ICP-MS分析中不同莫氏硬度矿物激光剥蚀行为及剥蚀速率研究[J]. 岩石矿物学杂志, 2019, 38(1): 115-122.

Wang H, Wang F Y, Sheng Z Q, et al. The laser ablation behavior and rate of minerals with different Mohs hardnesses in LA-ICP-MS analysis[J].Acta Petrologica et Mineralogica, 2019, 38(1): 115-122.

[31]

吴石头, 王亚平, 许春雪, 等. 193nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J]. 分析化学, 2016, 44(7): 1035-1041.

Wu S T, Wang Y P, Xu C X, et al. Elemental fractionation studies of 193nm ArF excimer laser ablation system at high space resolution mode[J].Chinese Journal of Analytical Chemistry, 2016, 44(7): 1035-1041.

[32]

范晨子, 詹秀春, 曾普胜, 等. 白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究[J]. 岩矿测试, 2015, 34(6): 609-616.

Fan C Z, Zhan X C, Zeng P S, et al. Multi-element content analysis of rare earth fluorocarbonates from Bayan Obo deposit by laser ablation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(6): 609-616.

[33]

Günther D, Heinrich C A. Comparison of the ablation be-haviour of 266nm Nd:YAG and 193nm ArF excimer lasers for LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1369-1374.

[34]

Mank A J G, Mason P R D. A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples[J].Journal of Analytical Atomic Spectrometry, 1999, 14(8): 1143-1153.

[35]

Kosler J, Wiedenbeck M, Wirth R, et al. Chemical and phase composition of particles produced by laser ablation of silicate glass and zircon-implications for elemental fractionation during ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 2005, 20: 402-409.

[36]

胡志中, 李佩, 蒋璐蔓, 等. 古代玻璃材料LA-ICP-MS组分分析及产源研究[J]. 岩矿测试, 2020, 39(4): 505-514.

Hu Z Z, Li P, Jiang L M, et al. Application of LA-ICP-MS in the analysis of archaeological glass and source discrimination[J].Rock and Mineral Analysis, 2020, 39(4): 505-514.

[37]

吕涛, 刘勇胜, 张春来, 等. 193nm波长脉冲激光剥蚀地质样品的剥蚀速率变化规律[J]. 吉林大学学报(地球科学学报), 2015, 45(1): 1073-1074.

Lü T, Liu Y S, Zhang C L, et al. Study on ablation rates of a 193nm laser system for geological samples[J].Journal of Jilin University (Earth Science Edition), 2015, 45(1): 1073-1074.

[38]

Kuhn B K, Birbaum K, Luo Y, et al. Fundamental studies on the ablation behaviour of Pb/U in NIST610 and zircon 91500 using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology[J].Journal of Analytical Atomic Spectrometry, 2010, 25(1): 1-27.

[39]

Hu Z C, Liu Y S, Chen L, et al. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J].Journal of Analytical Atomic Spectrometry, 2011, 26: 425-430.

[40]

焦淑静, 张慧, 薛东川, 等. 泥页岩样品自然断面与氩离子抛光扫描电镜制样方法的比较与应用[J]. 电子显微学报, 2016, 35(6): 544-549.

Jiao S J, Zhang H, Xue D C, et al. Application and comparison of fresh fracture secondary electron SEM and ion-milled backscatter SEM for shale sample preparation[J].Journal of Chinese Electron Microscopy Society, 2016, 35(6): 544-549.

相似文献(共19条)

[1]

王坤阳, 杜谷. 利用原子力显微镜与能谱-扫描电镜研究页岩孔隙结构特征. 岩矿测试, 2020, 39(6): 839-846. doi: 10.15898/j.cnki.11-2131/td.202004180053

[2]

万浩章, 刘战庆, 刘善宝, 陈毓川, 王成辉, 陈国华, 梁力杰, 李赛赛, 张树德, 刘小林. 赣东北朱溪铜钨矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义. 岩矿测试, 2015, 34(4): 494-502. doi: 10.15898/j.cnki.11-2131/td.2015.04.019

[3]

竺成林, 王华建, 叶云涛, 王晓梅, 黄家旋, 朱玉梅, 杨瑞东. 基于原位多元素成像分析龙马溪组笔石成因及地质意义. 岩矿测试, 2019, 38(3): 245-259. doi: 10.15898/j.cnki.11-2131/td.201810110113

[4]

周文喜, 王华建, 付勇, 叶云涛, 王晓梅, 苏劲, 王富良, 葛枝华, 梁厚鹏, 魏帅超. 基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究. 岩矿测试, 2017, 36(2): 97-106. doi: 10.15898/j.cnki.11-2131/td.2017.02.002

[5]

赵令浩, 詹秀春, 胡明月, 孙冬阳, 范晨子, 袁继海, 蒯丽君, 屈文俊. 锍镍试金技术制备含铂族元素硫化物微区分析标准样品的可行性. 岩矿测试, 2013, 32(5): 694-701.

[6]

樊连杰, 裴建国, 赵良杰, 林永生, 卢丽, 王喆. LA-ICP-MS研究桂林寨底地下河系统中碳酸盐岩稀土元素特征及其形成环境. 岩矿测试, 2016, 35(3): 251-258. doi: 10.15898/j.cnki.11-2131/td.2016.03.006

[7]

范晨子, 詹秀春, 曾普胜, 胡明月. 白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究. 岩矿测试, 2015, 34(6): 609-616. doi: 10.15898/j.cnki.11-2131/td.2015.06.002

[8]

范晨子, 胡明月, 赵令浩, 孙冬阳, 詹秀春. 锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展. 岩矿测试, 2012, 31(1): 29-46.

[9]

肖志斌, 柳小明, 李正辉, 张红. 激光剥蚀-电感耦合等离子体质谱准确测定锆石中钛的含量. 岩矿测试, 2012, 31(2): 229-233.

[10]

金献忠, 谢健梅, 陈建国. 激光剥蚀电感耦合等离子体质谱法测定金属镀锡层的厚度. 岩矿测试, 2015, 34(3): 286-291. doi: 10.15898/j.cnki.11-2131/td.2015.03.004

[11]

付宇, 孙晓明, 熊德信. 激光剥蚀-电感耦合等离子体质谱法对白钨矿中稀土元素的原位测定. 岩矿测试, 2013, 32(6): 875-882.

[12]

孙冬阳, 王广, 范晨子, 赵令浩, 胡明月, 樊兴涛, 袁继海, 詹秀春. 激光剥蚀-电感耦合等离子体质谱线扫描技术的空间分辨率研究. 岩矿测试, 2012, 31(1): 127-131.

[13]

李凤春, 侯明兰, 栾日坚, 林培军, 李增胜, 赵龙, 王继林, 徐爽. 电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用. 岩矿测试, 2016, 35(1): 17-23. doi: 10.15898/j.cnki.11-2131/td.2016.01.004

[14]

张德贤. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 2012, 31(1): 120-126.

[15]

赵令浩, 詹秀春, 胡明月, 范晨子, 孙冬阳, 刘传宝. 单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用. 岩矿测试, 2013, 32(1): 1-14.

[16]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[17]

成学海, 夏传波, 郑建业, 张文娟, 刘晶. 封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素. 岩矿测试, 2017, 36(3): 231-238. doi: 10.15898/j.cnki.11-2131/td.201609220143

[18]

袁继海, 詹秀春, 樊兴涛, 胡明月. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展. 岩矿测试, 2011, 30(2): 121-130.

[19]

闫巧娟, 魏小燕, 叶美芳, 赵慧博, 周宁超. 激光剥蚀电感耦合等离子体质谱-电子探针分析白山堂铜矿中的黄铁矿成分. 岩矿测试, 2016, 35(6): 658-666. doi: 10.15898/j.cnki.11-2131/td.2016.06.012

计量
  • PDF下载量(41)
  • 文章访问量(659)
  • HTML全文浏览量(123)
  • 被引次数(0)
目录

Figures And Tables

锆石环氧树脂靶表面形貌特征及对LA-ICP-MS分析影响研究

胡志中, 王坤阳, 晏雄, 杨波, 杜谷