【引用本文】 刘景龙, 吴巧丽, . 原子荧光光谱仪工作温度对水体中砷含量测定的影响[J]. 岩矿测试, 2019, 38(2): 228-232. doi: 10.15898/j.cnki.11-2131/td.201804260052
LIU Jing-long, WU Qiao-li. Effect of Temperatures on Determination of Arsenic in Water by Atomic Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 228-232. doi: 10.15898/j.cnki.11-2131/td.201804260052

原子荧光光谱仪工作温度对水体中砷含量测定的影响

铜陵市环境监测中心站, 安徽 铜陵 244000

收稿日期: 2018-04-26  修回日期: 2018-08-13  接受日期: 2019-01-04

作者简介: 刘景龙, 硕士, 工程师, 从事环境监测分析工作。E-mail:ljlnby@126.com

Effect of Temperatures on Determination of Arsenic in Water by Atomic Fluorescence Spectrometry

Tongling Environmental Monitoring Central Station, Tongling 244000, China

Received Date: 2018-04-26
Revised Date: 2018-08-13
Accepted Date: 2019-01-04

摘要:氢化物发生-原子荧光光谱法受到仪器工作温度的影响主要来自于氢化物发生反应和仪器漂移,工作温度升高会增加仪器的背景值,而过低的工作温度又不利于氢化物发生反应进行。本文根据原子荧光光谱测定水体中砷的方法,在10℃、20℃和30℃的工作温度条件下,分别测试校准曲线、空白样品、自配质控样品和有证标准物质来确定最适宜的工作温度。结果表明:三个温度条件下的校准曲线均具有较好的线性相关性;仪器工作温度过高会引起空白荧光值变大、检出限升高,同时会造成仪器灵敏度的降低,增加了样品测试误差,测试结果不能满足准确度的要求。本文提出,利用原子荧光光谱法测定砷含量时,应控制仪器工作温度在10~20℃,并且保证温度变化相对稳定。

关键词: 水体, , 原子荧光光谱法, 氢化物发生, 工作温度, 灵敏度

要点

(1) 原子荧光光谱仪的工作温度影响其氢化物发生反应及仪器的背景值。

(2) 随着工作温度的升高,原子荧光光谱仪对砷元素的检出限会随之升高。

(3) 随着工作温度的升高,原子荧光光谱仪对砷元素的灵敏度会随之下降,甚至影响准确度。

Effect of Temperatures on Determination of Arsenic in Water by Atomic Fluorescence Spectrometry

ABSTRACT

BACKGROUND:

The influence of the operating temperature on Hydride Generation-Atomic Fluorescence Spectrometry comes mainly from the hydride reaction and the drift of the instrument. An increase in operating temperature increases the background value of the instrument, while a low operating temperature is not conducive to hydride reaction.

OBJECTIVES:

To investigate the effect of operating temperature on the determination of arsenic and to find the optimal temperature conditions.

METHODS:

According to the standard method of Atomic Fluorescence Spectrometry for determination of arsenic in water, the calibration curves, the blank samples, the QC samples and the standard materials were analyzed at temperatures of 10℃, 20℃ and 30℃, respectively.

RESULTS:

The calibration curves in three temperature conditions had good linear correlation. However, when the operating temperature increased, the blank fluorescence value and detection limit increased accordingly, and the instrument sensitivity decreased. The analytical results cannot meet the accuracy requirement.

CONCLUSIONS:

When the arsenic content is determined by Atomic Fluorescence Spectrometry, the working temperature of the instrument should be controlled at 10-20℃, where the temperature change is relatively stable.

KEY WORDS: water, arsenic, Atomic Fluorescence Spectrometry, hydride generation, operating temperature, sensitivity

HIGHLIGHTS

(1) The operating temperature of AFS influences the HG-reaction and the background value of the instrument.

(2) As the operating temperature increases, the detection limit of arsenic during AFS analysis will increase accordingly.

(3) As the operating temperature increases, the sensitivity of arsenic during AFS analysis will decrease, affecting the accuracy.

本文参考文献

[1]

杨常青, 张双双, 吴楠, 等. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J]. 岩矿测试, 2016, 35(5): 481-487.

Yang C Q, Zhang S S, Wu N, et al. Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 481-487.

[2]

李刚, 胡斯宪, 陈琳玲, 等. 原子荧光光谱分析技术的创新与发展[J]. 岩矿测试, 2013, 32(3): 359-376.

Li G, Hu S X, Chen L L, et al. Innovation and development for atomic fluorescence spectrometry analysis[J]. Rock and Mineral Analysis, 2013, 32(3): 359-376.

[3]

张锦茂, 梁敬, 董芳, 等. 中国30多年来原子荧光光谱仪器的发展与应用[J]. 中国无机分析化学, 2013, 3(4): 1-10.

Zhang J M, Liang J, Dong F, et al. Development of vapor generation-atomic fluorescence spectrometer and its applications in China in last more than thirty years[J]. Inorganic Analytical Abstracts of China, 2013, 3(4): 1-10.

[4]

Li Z X, Yang X M, Guo Y A, et al. Simultaneous deter-mination of arsenic, antimony, bismuth and mercury in geological materials by vapor generation-four-channel non-dispersive atomic fluorescence spectrometry[J].Talanta, 2008, 74: 915-921. doi: 10.1016/j.talanta.2007.07.028

[5]

刘曙, 华若男, 朱志秀, 等. 原子荧光光谱法测定萤石中砷含量:实验室内验证[J]. 分析试验室, 2015, 34(8): 939-943.

Liu S, Hua R N, Zhu Z X, et al. Determination of arsenic content in fluorite by atomic fluorescence spectrometry:In-house validation[J]. Chinese Journal of Analysis Laboratory, 2015, 34(8): 939-943.

[6]

何军, 冯伟. 氢化物发生-原子荧光法同时测定水中的砷和铅的研究[J]. 中国环境监测, 2011, 27(5): 30-32. doi: 10.3969/j.issn.1002-6002.2011.05.008

He J, Feng W. Simultaeous determination of trace amount of As and Pb in water by HG-AFS[J].Environmental Monitoring in China, 2011, 27(5): 30-32. doi: 10.3969/j.issn.1002-6002.2011.05.008

[7]

Yang X A, Lu X P, Zhang W B, et al. Selective deter-mination of four arsenic species in rice and water samples by modified graphite electrode-based electrolytic hydride generation coupled with atomic fluorescence spectrometry[J].Talanta, 2016, 159: 127-136. doi: 10.1016/j.talanta.2016.06.009

[8]

Carolina L T, Rodrigo A G, Marlo S A, et al. Deter-mination of total arsenic in seawater by hydride generation atomic fluorescence spectrometry[J].Microchemical Journal, 2010, 96: 157-160. doi: 10.1016/j.microc.2010.03.004

[9]

张庆建, 丁仕兵, 郭兵, 等. 原子荧光光谱法测定固体废弃物——氧化皮中的砷[J]. 中国无机分析化学, 2013, 3(2): 25-27. doi: 10.3969/j.issn.2095-1035.2013.02.006

Zhang Q J, Ding S B, Guo B, et al. Determination of arsenic in mill scale solid waste by atomic fluorescence spectrometry[J].Inorganic Analytical Abstracts of China, 2013, 3(2): 25-27. doi: 10.3969/j.issn.2095-1035.2013.02.006

[10]

张洪文, 张永辉, 韩康琴, 等. 多道全自动原子荧光光谱法测定土壤中的砷和汞[J]. 中国无机分析化学, 2014, 4(1): 18-21. doi: 10.3969/j.issn.2095-1035.2014.01.005

Zhang H W, Zhang Y H, Han K Q, et al. Determination of arsenic and mercury in soils by multi-channel automatic atomic fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 18-21. doi: 10.3969/j.issn.2095-1035.2014.01.005

[11]

Duan X C, Zhang J Y, Bu F L, et al. Direct determination of arsenic in soil samples by fast pyrolysis-chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2015, 111: 87-91. doi: 10.1016/j.sab.2015.07.005

[12]

齐素芬. AFS-2202双道原子荧光计测定砷锡铋汞中应注意的几个问题[J]. 岩矿测试, 2006, 25(2): 197-198. doi: 10.3969/j.issn.0254-5357.2006.02.023

Qi S F. Discussion on some problems in determination of As, Sn, Bi and Hg by AFS-2202 double-channel atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2006, 25(2): 197-198. doi: 10.3969/j.issn.0254-5357.2006.02.023

[13]

李学文, 金兰淑, 李会杰, 等. 氢化物发生-原子荧光光谱法测定痕量砷时仪器工作条件的选择[J]. 理化检验(化学分册), 2009, 45(1): 73-74.

Li X W, Jin L S, Li H J, et al. Choice of working condition of instrument in HG-AFS determination of trace amounts of arsenic[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(1): 73-74.

[14]

岳宇超, 常恺, 唐志华, 等. 原子荧光仪测定砷实验条件的优化[J]. 分析仪器, 2018, (1): 167-173. doi: 10.3969/j.issn.1001-232x.2018.01.031

Yue Y C, Chang K, Tang Z H, et al. Optimization of experimental conditions for determination of arsenic by atomic fluorescence spectrometry[J].Analytical Instrumentation, 2018, (1): 167-173. doi: 10.3969/j.issn.1001-232x.2018.01.031

[15]

Cabon J Y, Giamarchi P, Bihan A L, et al. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry:A comparative study[J].Analytica Chimica Acta, 2010, 664: 114-120. doi: 10.1016/j.aca.2010.02.014

[16]

赵如琳, 王骏峰, 孙梅, 等. 氢化物发生-原子荧光光谱法测定处理废水中砷[J]. 冶金分析, 2013, 33(1): 59-64. doi: 10.3969/j.issn.1000-7571.2013.01.011

Zhao R L, Wang J F, Sun M, et al. Determination of arsenic in treated sewage by hydride generation-atomic fluorescence spectrometry[J].Metallurgical Analysis, 2013, 33(1): 59-64. doi: 10.3969/j.issn.1000-7571.2013.01.011

[17]

程新良, 郭金鑫, 高远, 等. 双通道原子荧光法同时测定水中砷和硒[J]. 化学分析计量, 2015, 24(4): 75-77. doi: 10.3969/j.issn.1008-6145.2015.04.022

Cheng X L, Guo J X, Gao Y, et al. Simultaneous determination of arsenic and selenium in water samples by double channel atomic fluorescence spectrometry[J].Chemical Analysis and Meterage, 2015, 24(4): 75-77. doi: 10.3969/j.issn.1008-6145.2015.04.022

[18]

马旻, 柴昌信, 祝建国, 等. 氢化物发生-原子荧光光谱法的干扰及其消除[J]. 分析测试技术与仪器, 2011, 17(3): 179-182. doi: 10.3969/j.issn.1006-3757.2011.03.011

Ma M, Chai C X, Zhu J G, et al. Brief discussion on interference in hydride generation-atomic fluorescence spectrometry and its elimination[J].Analysis and Testing Technology and Instuments, 2011, 17(3): 179-182. doi: 10.3969/j.issn.1006-3757.2011.03.011

相似文献(共20条)

[1]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[2]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[5]

王惠萍, 郑若锋, 郑大中. 氢化物发生及其在分析检测领域的应用. 岩矿测试, 2008, 27(1): 55-59.

[6]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[7]

王洪彬. 氢化物发生-原子荧光光谱法测定面粉中微量砷. 岩矿测试, 2007, 26(6): 503-504.

[8]

赵 斌, 陈志兵, 董 丽. 氢化物发生-原子荧光光谱法测定植物样品中汞硒砷. 岩矿测试, 2010, 29(3): 319-321.

[9]

周惠琼, 朱霞萍, 廖余游. 微波消解-氢化物发生原子荧光光谱法同时测定化肥中的砷和汞. 岩矿测试, 2012, 31(2): 268-271.

[10]

汤志勇, 敖愫. 碱性体系在线氢化物发生原子荧光光谱法测定铜矿石中痕量砷锑铋. 岩矿测试, 1998, (4): 285-289.

[11]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[12]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[13]

胡外英. 砷的野外快速分析方法——氢化物发生-光导分光光度法. 岩矿测试, 2006, 25(4): 373-376.

[14]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[15]

徐爱琴. 原子荧光光谱法测砷锑铋汞中一些问题及解决方法. 岩矿测试, 2001, (1): 79-80.

[16]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[17]

肖灵, 张培新, 陈志兵. 氢化物发生-原子荧光光谱法测定多金属矿中的锡. 岩矿测试, 2004, (1): 70-72.

[18]

李淑娟, 于兆水, 张勤. 氢化物发生-原子荧光光谱法测定地球化学样品中痕量铋. 岩矿测试, 2005, (3): 217-220.

[19]

范凡. 氢化物发生-原子荧光光谱法测定地球化学样品中痕量碲. 岩矿测试, 2005, (3): 225-228.

[20]

周姣花, 汪建宇, 钟莅湘, 陈浩风, 王玉林. 氢化物发生-原子荧光光谱法测定生物样品中的硒. 岩矿测试, 2011, 30(2): 214-216.

计量
  • PDF下载量(32)
  • 文章访问量(173)
  • HTML全文浏览量(46)
  • 被引次数(0)
目录

Figures And Tables

原子荧光光谱仪工作温度对水体中砷含量测定的影响

刘景龙, 吴巧丽