【引用本文】 冉敬, 郭创锋, 杜谷, 等. X射线衍射全谱拟合法分析蓝晶石的矿物含量[J]. 岩矿测试, 2019, 38(6): 660-667. doi: 10.15898/j.cnki.11-2131/td.201902220025
RAN Jing, GUO Chuang-feng, DU Gu, et al. Quantitative Analysis of Mineral Composition of Kyanite by X-ray Diffraction with Rietveld Refinement Method[J]. Rock and Mineral Analysis, 2019, 38(6): 660-667. doi: 10.15898/j.cnki.11-2131/td.201902220025

X射线衍射全谱拟合法分析蓝晶石的矿物含量

1. 

中国地质调查局成都地质调查中心, 四川 成都 610081

2. 

四川省地质工程集团公司, 四川 成都 610017

收稿日期: 2019-02-22  修回日期: 2019-04-11  接受日期: 2019-07-16

基金项目: 国土资源部公益性行业科研专项(201111028-3,201311081-2)

作者简介: 冉敬, 教授级高级工程师, 主要从事岩石矿物分析工作。E-mail:rgg3000@163.com

Quantitative Analysis of Mineral Composition of Kyanite by X-ray Diffraction with Rietveld Refinement Method

1. 

Chengdu Center of Geological Survey, China Geological Survey, Chengdu 610081, China

2. 

Sichuan Province Geological Engineering Complex Cooperation, Chengdu 610017, China

Received Date: 2019-02-22
Revised Date: 2019-04-11
Accepted Date: 2019-07-16

摘要:蓝晶石矿物定量分析通常采用的化学物相法分析流程繁琐,易受同质异象矿物和难熔矿物的干扰;采用X射线衍射内标法需要提纯矿物绘制标准曲线,但矿物包体的存在使得获取纯净单矿物成为难题;由于不同矿区蓝晶石矿物成分之间存在着差异性,以上两种方法都仅仅适用于同一矿区样品的矿物定量分析。为简化分析流程,提高测试效率,本文采用X射线衍射(XRD)全谱拟合法对蓝晶石国家二级标准物质和野外样品进行分析,并与RIR法、绝热法和K值法等衍射定量方法及化学分析结果进行了比较验证方法的可靠性。结果表明:全谱拟合法无需采用标准物质,也不用引入内标物,一次扫谱分析能获得样品中所有成分的信息,操作简单,能有效降低择优取向对衍射定量结果的影响;对于含量大于5%的矿物,组分分析结果的绝对误差小于1%,显著低于绝对误差允许限;采用Highscore和Jade两种衍射数据处理软件获得的定量结果吻合度高,目标矿物蓝晶石分析结果的双差均小于0.8%,相对偏差小于2.5%;蓝晶石的加标回收率在95.3%~101.0%之间,能实现不同矿区蓝晶石矿的快速定量分析。

关键词: 蓝晶石, 物相组成, X射线衍射法, 全谱拟合, 择优取向

要点

(1) 采用X射线衍射全谱拟合法对蓝晶石矿标准物质和野外样品进行矿物成分定量分析。

(2) 全谱拟合法比RIR法、绝热法和K值法等衍射定量分析方法具有更高的准确度。

(3) 本方法适用于不同矿区蓝晶石矿的快速定量分析。

Quantitative Analysis of Mineral Composition of Kyanite by X-ray Diffraction with Rietveld Refinement Method

ABSTRACT

BACKGROUND:

The content of minerals in kyanite can be analyzed by chemical phase method, but the analytical process is very tedious. Moreover, the existence of heteromorphism and refractory minerals can affect the accuracy of analysis results. An internal standard method by X-ray diffraction (XRD) for direct determination of kyanite requires the use of pure mineral to draw a standard curve, but it is extremely challenging to purify minerals due to the inclusion. The differences between the mineral components of kyanite in different mining areas makes the above two methods applicable only to the quantitative analysis of minerals in the same mining area.

OBJECTIVES:

To simplify analysis the process of mineral composition of kyanite and improve efficiency.

METHODS:

The content of minerals in kyanite was studied by X-ray diffraction. The X-ray diffraction Rietveld refinement method was used to analyze the secondary standard materials and field samples of kyanite, and the results were compared with the diffraction quantitative method and chemical analysis results including RIR method, adiabatic method and K-value method.

RESULTS:

Rietveld refinement method was simple and effective in correcting the diffraction intensity error caused by the preferred orientation. Accurate results can be obtained by Rietveld refinement method more than other methods of X-ray quantitative phase analysis, such as RIR method, adiabatic method, K-value method. The analytic absolute error of minerals with content greater than 5% was less 1%, and significantly lower than the allowable error. The results obtained by Highscore agree well with results measured by Jade, and the double difference of results was less than 0.8%. The relative standard deviation was less than 2.5%. The spiked recoveries of kyanite were 95.3%-101.0%.

CONCLUSIONS:

X-ray diffraction with Rietveld refinement method is simple, and can be used to determine the content of all minerals in kyanite from different mining areas.

KEY WORDS: kyanite, phase composition, X-ray diffraction, Rietveld refinement method, preferred orientation

HIGHLIGHTS

(1) Application of the Rietveld refinement method for quantification of mineral concentrations in kyanite was performed.

(2) The accuracy of the method was superior to the other methods of X-ray quantitative phase analysis, such as RIR method, adiabatic method, K-value method.

(3) The method can be used to quickly determine the contents of all minerals in kyanite from different mining area.

本文参考文献

[1]

王梅英. 蓝晶石的化学物相分析[J]. 非金属矿, 2006, 29(1): 15-16.

Wang M Y. Chemical phase analysis of cyanite[J]. Non-Metallic Mines, 2006, 29(1): 15-16.

[2]

王梅英, 李鹏程, 李艳华, 等. 蓝晶石矿中氟钠镁铝硅铁钛钾钙元素的X射线荧光光谱分析[J]. 岩矿测试, 2013, 32(6): 909-914. doi: 10.3969/j.issn.0254-5357.2013.06.011

Wang M Y, Li P C, Li Y H, et al. Analysis of F, Na, Mg, Al, Si, Fe, Ti, K and Ca in cyanite ores by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 909-914. doi: 10.3969/j.issn.0254-5357.2013.06.011

[3]

杜晓冉, 智红梅, 张金矿, 等. X射线衍射法定量分析蓝晶石样品[J]. 理化检验(化学分册), 2013, 49(4): 402-404.

Du X R, Zhi H M, Zhang J K, et al. Quantitative analysis of kyanite sample with X-ray diffractometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(4): 402-404.

[4]

邱贤荣, 齐砚勇, 唐志强, 等. 全谱拟合定量分析石灰石[J]. 分析科学学报, 2013, 29(1): 146-148.

Qiu X R, Qi Y Y, Tang Z Q, et al. Rietveld quantitative analysis of limestone[J]. Journal of Analytical Science, 2013, 29(1): 146-148.

[5]

冉敬, 杜谷, 王凤玉, 等. X射线衍射全谱拟合法快速分析长石矿物含量[J]. 岩矿测试, 2017, 36(5): 489-494.

Ran J, Du G, Wang F Y, et al. Rapid analysis of feldspar by X-ray diffractometry Rietveld refinement method[J]. Rock and Mineral Analysis, 2017, 36(5): 489-494.

[6]

迟广成, 肖刚, 汪寅夫, 等. 铁矿石矿物组分的X射线粉晶衍射半定量分析[J]. 冶金分析, 2015, 35(1): 38-44.

Chi G C, Xiao G, Wang Y F, et al. Semi-quantitative analysis of the mineral components of iron ores by X-ray powder diffraction[J]. Metallurgical Analysis, 2015, 35(1): 38-44.

[7]

洪汉烈, 陈建军, 杨淑珍, 等. 水泥熟料定定量分析的全谱拟合法[J]. 分析测试学报, 2001, 20(2): 5-8. doi: 10.3969/j.issn.1004-4957.2001.02.002

Hong H L, Chen J J, Yang S Z, et al. Quantitative phase analysis of cement clinker by Rietveld full pattern fitting method[J].Journal of Instrumental Analysis, 2001, 20(2): 5-8. doi: 10.3969/j.issn.1004-4957.2001.02.002

[8]

Gualtieri M L, Romagnoli M, Miselli P, et al. Full quantitative phase analysis of hydrated lime using the Rietveld method[J]. Cement & Concrete Research, 2012, 42(9): 1273-1279.

[9]

Santini T C. Application of the Rietveld refinement method for quantification of mineral concentrations in bauxite residues (alumina refining tailings)[J].International Journal of Mineral Processing, 2015, 139: 1-10. doi: 10.1016/j.minpro.2015.04.004

[10]

Woodruff L, Cannon W F, Smith D B, et al. The distribu-tion of selected elements and minerals in soil of the conterminous United States[J].Journal of Geochemical Exploration, 2015, 154: 49-60. doi: 10.1016/j.gexplo.2015.01.006

[11]

Gentili S, Comodi P, Bonadiman C, et al. Mass balance vs Rietveld refinement to determine the modal composition of ultramafic rocks:The case study of mantle peridotites from Northern Victoria Land (Antarctica)[J].Tectonophysics, 2015, 650: 144-155. doi: 10.1016/j.tecto.2015.01.024

[12]

肖松. 河南隐山蓝晶石矿物成因的研究[J]. 中国矿业, 2005, 14(2): 47-49. doi: 10.3969/j.issn.1004-4051.2005.02.015

Xiao S. On mineral genesis of Yinsan kyanite in Henan[J].China Mineral Magazine, 2005, 14(2): 47-49. doi: 10.3969/j.issn.1004-4051.2005.02.015

[13]

李锁成, 张松林, 火军昌, 等. 萨尔哈布塔勒蓝晶石矿床地质及矿物学特征[J]. 矿产保护与利用, 2015, (1): 12-15.

Li S C, Zhang S L, Huo J C, et al. The process mineralogy and geological characters of Saerhabutale Kyanite deposit in Gansu Province[J]. Conservation and Utilization of Mineral Resources, 2015, (1): 12-15.

[14]

万红波, 廖立兵. 膨润土中蒙脱石物相的定量分析[J]. 硅酸盐学报, 2009, 37(12): 2055-2060. doi: 10.3321/j.issn:0454-5648.2009.12.017

Wan H B, Liao L B. Quantitative phase analysis of montmorillonite in bentonite[J].Journal of the Chinese Ceramic Society, 2009, 37(12): 2055-2060. doi: 10.3321/j.issn:0454-5648.2009.12.017

[15]

房俊卓, 张霞, 徐崇福, 等. 实验条件对X射线衍射物相定量分析结果的影响[J]. 岩矿测试, 2008, 27(1): 60-62. doi: 10.3969/j.issn.0254-5357.2008.01.015

Fang J Z, Zhang X, Xu C F, et al. Effect of experimental conditions on X-ray diffractometric quantitative phase analysis[J]. Rock and Mineral Analysis, 2008, 27(1): 60-62. doi: 10.3969/j.issn.0254-5357.2008.01.015

[16]

马礼敦. X射线粉末衍射的新起点——Rietveld全谱拟合[J]. 物理学进展, 1996, 16(2): 251-271. doi: 10.3321/j.issn:1000-0542.1996.02.005

Ma L D. The new starting point of X-ray powder diffraction-Rietveld whole pattern fitting[J].Progress in Physics, 1996, 16(2): 251-271. doi: 10.3321/j.issn:1000-0542.1996.02.005

[17]

林伟伟, 宋友桂. 沉积物中X射线衍射物相定量分析中的两种方法对比研究[J]. 地球环境学报, 2017, 8(1): 83-86.

Lin W W, Song Y G. A comparative study on X-ray diffraction mineral quantitative analysis of two methods in sediments[J]. Journal of Earth Enviroment, 2017, 8(1): 83-86.

[18]

伍月, 刘欣, 张波, 等. X射线粉晶衍射基体清洗法在矿物定量分析中的应用[J]. 地质与资源, 2017, 26(3): 323-328.

Wu Y, Liu X, Zhang B, et al. The application and research of X-ray powder diffraction matrix flushing method in quantitative analysis[J]. Geology and Resources, 2017, 26(3): 323-328.

[19]

施倪承, 白文吉, 马喆生, 等. 西藏罗布莎铬铁矿床中的金刚石包体X射线衍射研究[J]. 地质学报, 2002, 76(4): 496-500. doi: 10.3321/j.issn:0001-5717.2002.04.008

Shi N C, Bai W J, Ma Z S, et al. A study of X-ray diffraction of diamond inclusions from Luobusha, Tibet[J].Acta Geologica Sinica, 2002, 76(4): 496-500. doi: 10.3321/j.issn:0001-5717.2002.04.008

[20]

王德强, 王辅亚, 王冠鑫, 等. 钾含量对白云母X射线衍射特征的影响[J]. 大地构造与成矿学, 2004, 28(1): 69-73. doi: 10.3969/j.issn.1001-1552.2004.01.010

Wang D Q, Wang F Y, Wang G X, et al. XRD character of muscovites with different potassium contents[J].Geotectonica et Metallogenia, 2004, 28(1): 69-73. doi: 10.3969/j.issn.1001-1552.2004.01.010

[21]

杜谷, 王坤阳, 冉敬, 等. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用[J]. 岩矿测试, 2014, 33(5): 625-633. doi: 10.3969/j.issn.0254-5357.2014.05.003

Du G, Wang K Y, Ran J, et al. Application of IR/SEM and other modern instruments for mineral identification[J]. Rock and Mineral Analysis, 2014, 33(5): 625-633. doi: 10.3969/j.issn.0254-5357.2014.05.003

相似文献(共20条)

[1]

宋党育, 张军营, 郑楚光, 李建欣. X射线衍射数据分析系统评价. 岩矿测试, 2008, 27(3): 189-193.

[2]

冉敬, 杜谷, 王凤玉. X射线衍射全谱拟合法快速分析长石矿物含量. 岩矿测试, 2017, 36(5): 489-494. doi: 10.15898/j.cnki.11-2131/td.201610110154

[3]

徐国栋, 王冠, 程江, 董随亮. 应用能谱扫描电镜与X射线衍射等分析技术研究西藏扎西康铅锌矿中伴生元素锰的赋存状态. 岩矿测试, 2014, 33(6): 808-812. doi: 10.15898/j.cnki.11-2131/td.2014.06.008

[4]

戴慧, 蒋小平, 张敏, 贾云波, 李宁, 俞雷. 一种罕见的红宝石与蓝晶石共生玉石. 岩矿测试, 2010, 29(4): 478-480.

[5]

曾蒙秀, 宋友桂. 基于麦夸特算法的X射线衍射物相定量分析的影响因素研究. 岩矿测试, 2012, 31(5): 798-806.

[6]

迟广成, 宋丽华, 赵爱林. X射线粉晶衍射仪分析磷化膜组成. 岩矿测试, 2007, 26(2): 163-164.

[7]

黄剑锋, 朱广燕, 吴建鹏, 曹丽云, 贺海燕. 无机材料中24种组分X射线衍射物相定量分析外标法标准曲线库的建立. 岩矿测试, 2007, 26(5): 398-400.

[8]

范磊, 邱家军, 宋鹏, 王纯阳, 罗利嘉, 周超, 张文华. 珊瑚化石的组成及显微结构分析. 岩矿测试, 2014, 33(3): 345-349.

[9]

任叶叶, 张俭, 严俊, 林剑, 陈思杭, 盛嘉伟. 应用X射线衍射-红外光谱等技术研究滑石在机械力研磨中的形貌和晶体结构变化及影响机制. 岩矿测试, 2015, 34(2): 181-186. doi: 10.15898/j.cnki.11-2131/td.2015.02.005

[10]

徐国栋, 葛建华, 杜谷, 王以尧, 金斌, 董俊. 成都市中心城区地表沉积物中重金属分布及矿物学特征. 岩矿测试, 2019, 38(4): 418-428. doi: 10.15898/j.cnki.11-2131/td.201811100120

[11]

叶美芳, 刘三, 解古巍, 赵慧博, 周宁超, 魏小燕, 杨建国, 侯弘, 王磊, 王轶. 应用扫描电镜-X射线衍射-电子探针研究北山斑岩铜矿区绢英岩中白色云母的特征. 岩矿测试, 2016, 35(2): 166-177. doi: 10.15898/j.cnki.11-2131/td.2016.02.009

[12]

周姣花, 汪建宇, 顾茗心, 王真. 利用X射线衍射和岩矿鉴定等技术研究河南汤家坪钼矿区主要矿物标型特征. 岩矿测试, 2015, 34(1): 82-90. doi: 10.15898/j.cnki.11-2131/td.2015.01.011

[13]

赵燕平, 王兆周. X射线物相定量分析中消除择优取向的新方法—无压制样法. 岩矿测试, 1984, (3): 239-243.

[14]

张梅, 高孝礼, 黄光明, 封亚辉. 微量石棉的X射线衍射定量检测. 岩矿测试, 2010, 29(3): 309-312.

[15]

周姣花, 周晶, 牛睿, 徐畅. 重砂分级-扫描电镜-能谱等技术研究湖南张家界黑色页岩贵金属元素赋存状态. 岩矿测试, 2019, 38(6): 649-659. doi: 10.15898/j.cnki.11-2131/td.201905090057

[16]

武素茹, 宋义, 谷松海, 郭芬, 孙鑫. X射线荧光光谱-X射线衍射-红外光谱联用技术鉴别锰矿与锰冶炼渣. 岩矿测试, 2015, 34(6): 659-664. doi: 10.15898/j.cnki.11-2131/td.2015.06.009

[17]

迟广成, 肖刚, 伍月, 陈英丽, 王海娇, 胡建飞. X射线粉晶衍射仪在大理岩鉴定与分类中的应用. 岩矿测试, 2014, 33(5): 698-705.

[18]

解古巍, 叶美芳, 黄静, 王小琳, 南珺祥, 任志鹏, 石小虎, 柳娜. 大颗粒黏土矿物对黏土矿物X射线衍射定量分析的影响. 岩矿测试, 2018, 37(5): 499-506. doi: 10.15898/j.cnki.11-2131/td.201708190131

[19]

张妮, 林春明. X射线衍射技术应用于宝石鉴定-合成及晶体结构研究进展. 岩矿测试, 2016, 35(3): 217-228. doi: 10.15898/j.cnki.11-2131/td.2016.03.002

[20]

唐梦奇, 黎香荣, 刘国文, 刘顺琼. X射线衍射K值法测定氧化铁皮中游离α-SiO2的含量. 岩矿测试, 2015, 34(5): 565-569. doi: 10.15898/j.cnki.11-2131/td.2015.05.011

计量
  • PDF下载量(32)
  • 文章访问量(240)
  • HTML全文浏览量(61)
  • 被引次数(0)
目录

Figures And Tables

X射线衍射全谱拟合法分析蓝晶石的矿物含量

冉敬, 郭创锋, 杜谷, 王凤玉