【引用本文】 李子夏, 逯海, . 一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成[J]. 岩矿测试, 2020, 39(3): 417-424. doi: 10.15898/j.cnki.11-2131/td.201909290141
LI Zi-xia, LU Hai. One-step Ion-exchange Separation and Measurement of Boron Isotope Ratios in High Calcium Biological Samples with by MC-ICP-MS[J]. Rock and Mineral Analysis, 2020, 39(3): 417-424. doi: 10.15898/j.cnki.11-2131/td.201909290141

一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成

1. 

西安医学院口腔医学院, 陕西 西安 710021

2. 

中国计量科学研究院, 北京 100013

收稿日期: 2019-09-29  修回日期: 2019-11-05  接受日期: 2020-04-24

基金项目: 陕西省科技厅自然科学基础研究计划项目(2020JQ-875);西安医学院国家自然基金培育项目(2017GJFY17)

作者简介: 李子夏, 博士, 副教授, 主要从事同位素和微量元素在口腔医学中运用研究。E-mail:zxlixiyi@163.com

One-step Ion-exchange Separation and Measurement of Boron Isotope Ratios in High Calcium Biological Samples with by MC-ICP-MS

1. 

School of Stomatology, Xi'an Medical University, Xi'an 710021, China

2. 

National Institute of Metrology, Beijing 100013, China

Received Date: 2019-09-29
Revised Date: 2019-11-05
Accepted Date: 2020-04-24

摘要:硼是生物样品(牙齿或骨骼)中重要的微量元素,其含量和同位素组成可以指示宿主的食物摄入、迁移和健康信息,因此生物样品中的硼同位素是重要的环境示踪剂。但生物样品中钙含量较高(>90%),无法采用常规的硼特效树脂分离流程进行硼同位素的分离富集。本文采用醋酸-醋酸铵缓冲液(pH=6.0)替代以往使用的氨水作为树脂再生溶液,将硼特效树脂吸附硼的pH值从8~9降至6.0,从而避免了富含钙的生物样品在碱性条件下(pH=8~9)容易生成沉淀的难题,只需一步离子交换就能富集生物样品中的硼。样品经分离后其中的硼同位素采用多接收电感耦合等离子体质谱(MC-ICP-MS)的“标准-样品-标准”交叉法进行测定。结果表明:采用一步离子交换法分离富集,MC-ICP-MS测定生物样品(牙齿)中硼同位素的测试精度小于0.42‰,达到与其他分离和测试方法相同的水平。该方法不仅适用于牙齿和骨骼等高钙生物样品的硼同位素示踪,且为高钙土壤和海洋沉积物样品的分析提供了借鉴。

关键词: 生物样品, 硼同位素, 离子交换, 硼特效树脂, 醋酸-醋酸铵缓冲液, 多接收电感耦合等离子体质谱法

要点

(1) 醋酸-醋酸铵缓冲液(pH=6.0)作为硼特效树脂再生溶液,避免了富含钙的生物样品在碱性条件下(pH=8~9)生成沉淀。

(2) 采用硼特效树脂(pH=6.0)一步离子交换法富集生物样品中的硼。

(3) 采用MC-ICP-MS“标准-样品-标准”交叉法高精度测定生物样品的硼同位素。

One-step Ion-exchange Separation and Measurement of Boron Isotope Ratios in High Calcium Biological Samples with by MC-ICP-MS

ABSTRACT

BACKGROUND:

Boron is an important trace element in high calcium biological samples, such as teeth and bones. Boron content and isotopic composition are important environmental tracers. However, the calcium content in biological samples is relatively high (>90%), and it is impossible to separate and enrich boron isotopes by using the conventional boron-special resin separation process.

OBJECTIVES:

To establish an efficient method for treatment of boron isotopes in high calcium samples.

METHODS:

An acetic acid-ammonium acetate buffer (pH=6.0) was used as a resin regeneration solution to replace ammonia. The adsorption pH of boron resin, boron-special resin (Amberlite IRA 743) was dropped from 8-9 to 6.0, thus the precipitation was avoided during digestion of the high calcium biological samples under alkaline conditions. Only one step of ion exchange is necessary to enrich boron in biological samples. The boron isotope of samples after separation was determined by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using a standard-sample-standard bracketing method.

RESULTS:

A one-step ion exchange method was used for separation and enrichment. The analytical accuracy of MC-ICP-MS for the determination of boron isotopes in teeth was less than 0.42‰, reaching the same level as other separation and determination methods.

CONCLUSIONS:

This method is not only suitable for boron isotope tracing of high calcium biological samples such as teeth and bones, but also provides a reference for the analysis of high calcium soil and marine sediment.

KEY WORDS: biological samples, boron isotope, ion exchange, boron-special resin, acetate-ammonium acetate buffer, multi-collector inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) An acetic acid-ammonium acetate buffer (pH=6.0) was used as a resin regeneration solution to avoid the precipitation of calcium-enriched biological samples under alkaline conditions (pH=8-9).

(2) A one-step ion exchange method was used for enriching boron in biological samples with boron special resin (pH=6.0).

(3) The 'standard-sample-standard' bracketing method was suitable for the high precision of boron isotopic measurement in high calcium biological samples.

本文参考文献

[1]

Uluisik I, Karakaya H C, Koc A, et al. The importance of boron in biological systems[J].Journal of Trace Elements in Medicine and Biology, 2018, 45: 156-162.

[2]

Usuda K, Kono K, Dote T, et al. An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese[J]. Environmental Health and Preventive Medicine, 2007, 12(6): 231-237.

[3]

Toker H, Ozdemir H, Yuce H B, et al. The effect of boron on alveolar bone loss in osteoporotic rats[J].Journal of Dental Sciences, 2016, 11(3): 331-337.

[4]

Abdelnour S A, El-Hack M E A, Swelum A A, et al. The vital roles of boron in animal health and production:A comprehensive review[J]. Journal of Trace Elements in Medicine and Biology, 2018, 50: 296-304.

[5]

Nielsen F H. Update on human health effects of boron[J]. Journal of Trace Elements in Medicine and Biology, 2014, 28(4): 383-387.

[6]

He M Y, Jin Z D, Luo C G, et al. Determination of boron isotope ratios in tooth enamel by inductively coupled plasma mass spectrometry (ICP-MS) after matrix separation by ion exchange chromatography[J].Journal of the Brazilian Chemical Society, 2015, 26(5): 949-954.

[7]

Tasli P N, Dogan A, Demirci S, et al. Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro[J]. Biological Trace Element Research, 2013, 153(1-3): 419-427.

[8]

Tütken T, Vennemann T W. Fossil bones and teeth:Preservation or alteration of biogenic compositions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(1): 1-8.

[9]

He M Y, Xiao Y K, Jin Z D, et al. Accurate and precise determination of boron isotopic ratios at low concentration by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions[J]. Analytical Chemistry, 2013, 85(13): 6248-6253.

[10]

Bernard A, Tütken T, Gerdes A.Boron isotopes in bones and teeth: A new proxy for dietary reconstructions and its resistance to diagenetic alteration[C]//The 7th International Bone Diagenesis Meeting, 2013: 19.

[11]

Sun A D, Xu Q C, Xu S J, et al. Determination of boron using headspace liquid phase micro-sublimation coupled with inductively coupled plasma optical emission spectrometry[J].Analytical Letter, 2013, 46(16): 2610-2619.

[12]

Kumagai A, Fujita Y J, Endo S, et al. Concentrations of trace element in human dentin by sex and age[J]. Forensic Science International, 2012, 219(1-3): 29-32.

[13]

张莉娟, 徐铁民, 方蓬达, 等. 超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素[J]. 岩矿测试, 2019, 38(2): 147-153.

Zhang L J, Xu T M, Fang P D, et al. Determination of trace elements in soil by inductively coupled plasma-mass spectrometry with ultrafine slurry sampling[J]. Rock and Mineral Analysis, 2019, 38(2): 147-153.

[14]

阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159.

Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159.

[15]

孙爱德, 徐庆彩, 刘丽华, 等. 植物体中硼分离方法的建立及其同位素质谱测定[J]. 分析化学, 2014, 42(1): 83-87.

Sun A D, Xu Q C, Liu L H, et al. Separation and analysis of boron and its isotopic composition in plants[J].Chinese Journal of Analytical Chemistry, 2014, 42(1): 83-87.

[16]

Chen X Y, Teng F Z, Catling D C, et al. Fast and precise boron isotopic analysis of carbonates and seawater using Nu Plasma Ⅱ multi-collector inductively coupled plasma mass spectrometry and a simple sample introduction system[J].Rapid Communications on Mass Spectrometry, 2019, 33(14): 1169-1178.

[17]

Farmer J R, Hönisch B, Uchikawa J, et al. Single laboratory comparison of MC-ICP-MS and N-TIMS boron isotope analyses in marine carbonates[J]. Chemical Geology, 2016, 447: 173-182.

[18]

Zhang Y L, Xiao Y K, Ma Y Q, et al. Sample preparation for isotopic determination of boron in clay sediments[J]. Chinese Journal of Geochemistry, 2013, 32(2): 203-211.

[19]

张艳灵, 肖应凯, 马云麒, 等. 三步离子交换方法用于粘土沉积物酸溶相中硼同位素测定[J]. 分析化学, 2016, 44(5): 809-815.

Zhang Y L, Xiao Y K, Ma Y Q, et al. Sample preparation for isotope determination of boron in clay sediments by three-step ion-exchange method[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 809-815.

[20]

Arica E, Yuksel B, Yener I, et al. ICP-MS determination of lead levels in autopsy liver samples:An application in forensic medicine[J].Atomic Spectroscopy, 2018, 39(2): 62-66.

[21]

Tel-Cayan G, Ullah Z, Ozturk M, et al. Heavy metals, trace and major elements in 16 wild mushrooms species determined by ICP-MS[J]. Atomic Spectroscopy, 2018, 39(1): 29-37.

[22]

Karaaslan N M, Yaman M. Assessment and ICP-MS determination of toxic metal content (Cd, Cr, Ni, and Pb) in Turkish chicken meat for use as bioindicator for human health[J]. Atomic Spectroscopy, 2018, 39(1): 16-21.

[23]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1): 1-15.

[24]

Yin X, Wang X, Chen S, et al. Trace element determination in sulfur samples using a novel digestion bomb prior to ICP-MS analysis[J]. Atomic Spectroscopy, 2018, 39(4): 137-141.

[25]

刘纯瑶, 苟龙飞, 邓丽, 等. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响[J]. 岩矿测试, 2019, 38(1): 35-44.

Liu C Y, Gou L F, Deng L, et al. Effects of Li isotopic fractionation during ion exchange on the measurement accuracy of Li isotopes[J]. Rock and Mineral Analysis, 2019, 38(1): 35-44.

[26]

袁永海, 杨锋, 余红霞, 等. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J]. 岩矿测试, 2018, 37(4): 356-363.

Yuan Y H, Yang F, Yu H X, et al. High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356-363.

[27]

He M Y, Jin Z D, Lu H, et al. Efficient separation of boron using solid-phase extraction for boron isotope analysis by MC-ICP-MS[J]. Analytical Methods, 2015, 24(7): 10322-10327.

[28]

He M Y, Deng L, Lu H, et al. Elimination of boron memory effect for rapid and accurate boron isotope analysis by MC-ICP-MS using NaF[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1026-1032.

[29]

Leeman W P, Vocke R D, Beary E S, et al. Precise boron isotopic analysis of aqueous samples:Ion exchange extraction and mass spectrometry[J].Geochimica et Cosmochimica Acta, 1991, 55(12): 3901-3907.

[30]

Xiao Y K, Liao B Y, Liu W G, et al. Ion exchange extraction of boron from aqueous fluids by Amberlite IRA 743 resin[J]. Chinese Journal of Chemistry, 2003, 21(8): 1073-1079.

[31]

Davidson G R, Bassett R L. Application of boron isotopes for identifying contaminants such as fly ash leachate in groundwater[J].Environmental Science & Technology, 1993, 27(1): 172-176.

[32]

肖应凯, 刘卫国, 肖云, 等. 硼特效树脂离子交换法分离硼的研究[J]. 盐湖研究, 1997, 5(2): 1-6.

Xiao Y K, Liu W G, Xiao Y, et al. The investigation of ion exchange technique for extracting boron from aqueous fluids by boron specific ion exchange resin[J].Journal of Salt Lake Science, 1997, 5(2): 1-6.

[33]

Wang B S, You C F, Huang K F, et al. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS[J]. Talanta, 2010, 82(4): 1378-1384.

[34]

Tanimizu M, Nagaishi K, Ishikawa T, et al. A rapid and precise determination of boron isotope ratio in water and carbonate samples by multiple collector ICP-MS[J]. Analytical Sciences, 2018, 34(6): 667-674.

相似文献(共18条)

[1]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[2]

戴梦宁, 宗春蕾, 袁洪林. 高Rb/Sr岩石样品中Sr同位素多接收等离子体质谱分析校正方法研究. 岩矿测试, 2012, 31(1): 95-102.

[3]

石俊仙, 姚建贞, 张勤, 何江. 阳离子交换树脂静态分离-催化分光光度法测定生物样品中痕量碘. 岩矿测试, 2006, 25(4): 327-330.

[4]

杨红霞, 刘崴, 李冰. 碱消解-高效液相色谱-电感耦合等离子体质谱法测定生物样品中的甲基汞和乙基汞. 岩矿测试, 2008, 27(6): 405-408.

[5]

朱玉伦, 戴莺. 硼特效树脂分离分光光度法测定岩石矿物中痕量硼. 岩矿测试, 1989, (3): 204-207.

[6]

冯永明, 邢应香, 刘洪青, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究. 岩矿测试, 2014, 33(1): 34-39.

[7]

李冰, 马新荣, 韩丽荣. 稀氨水密封溶解—电感耦合等离子体质谱测定土壤沉积物及生物样品中的碘溴. 岩矿测试, 2003, (3): 174-178.

[8]

王刚, 肖应凯. 岩石中硼的提取分离及同位素组成的测定. 岩矿测试, 2000, (3): 169-172.

[9]

吴淑琪. 生物和环境样品中痕量溴碘的小体积交换分离与测定. 岩矿测试, 1993, (4): 259-263.

[10]

段桂玲, 段瑞春, 谭娟娟, 顾涛, 邵长生, 路韬. 土壤样品镉同位素分析中Cd与Sn有效分离方法的改进. 岩矿测试, 2016, 35(1): 10-16. doi: 10.15898/j.cnki.11-2131/td.2016.01.003

[11]

王礼兵, 屈文俊, 李超, 周利敏, 杜安道, 俎波. 负离子热表面电离质谱法测量铼的化学分离方法研究. 岩矿测试, 2013, 32(3): 402-408.

[12]

唐索寒, 李津, 梁细荣, 张利国, 李国占, 濮巍, 李潮峰, 杨岳衡, 储著银, 张俊, 侯可军, 王晓明. 钕同位素比值143Nd/144Nd标准溶液研制. 岩矿测试, 2017, 36(2): 163-170. doi: 10.15898/j.cnki.11-2131/td.2017.02.010

[13]

张绿茵, 余晓平, 郭亚飞, 邓天龙. 生物样品中硒形态分析前处理技术. 岩矿测试, 2012, 31(3): 407-412.

[14]

周姣花, 汪建宇, 钟莅湘, 陈浩风, 王玉林. 氢化物发生-原子荧光光谱法测定生物样品中的硒. 岩矿测试, 2011, 30(2): 214-216.

[15]

于兆水, 张勤, 李小莉, 樊守忠, 潘晏山, 李国会. 高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素. 岩矿测试, 2014, 33(6): 844-848.

[16]

宋淑玲, 田芹, 佟玲, 潘萌, 马生明. 生物样品母乳中有机氯农药类化合物近二十年研究进展. 岩矿测试, 2016, 35(5): 449-457. doi: 10.15898/j.cnki.11-2131/td.2016.05.002

[17]

张彩霞, 孙忠, 叶建圣. 基于X射线荧光光谱法测定常见生物样品中常量和微量元素. 岩矿测试, 2012, 31(2): 272-276.

[18]

高博, 梁细荣, 刘颖, 胡光黔, 曾文, 涂湘林. 多接收器电感耦合等离子体质谱法测定镉标准溶液中镉的同位素组成. 岩矿测试, 2008, 27(5): 321-324.

计量
  • PDF下载量(8)
  • 文章访问量(167)
  • HTML全文浏览量(14)
  • 被引次数(0)
目录

Figures And Tables

一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成

李子夏, 逯海