【引用本文】 贾玉衡, 钱建平, . 电子探针-电感耦合等离子体质谱法研究不同种类石榴石的稀土元素配分和矿物学特征[J]. 岩矿测试, 2020, 39(6): 886-895. doi: 10.15898/j.cnki.11-2131/td.202005060007
JIA Yu-heng, QIAN Jian-ping. Study on REE Distribution and Mineralogical Characteristics of Different Garnets by Electron Probe and Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 886-895. doi: 10.15898/j.cnki.11-2131/td.202005060007

电子探针-电感耦合等离子体质谱法研究不同种类石榴石的稀土元素配分和矿物学特征

桂林理工大学地球科学学院, 广西 桂林 541006

收稿日期: 2020-04-15  修回日期: 2020-08-06  接受日期: 2020-09-19

基金项目: 中国地质科学院地质研究所基本科研业务费项目(J2004);自然资源部中国地质调查局勘测计划(DD201900660,DD20190629)

作者简介: 贾玉衡, 博士研究生, 地质资源与地质工程专业。E-mail:yuhengjia@glut.edu.cn

通信作者: 钱建平, 博士生导师, 主要从事矿床和地球化学研究。E-mail:jpjian@163.com

Study on REE Distribution and Mineralogical Characteristics of Different Garnets by Electron Probe and Inductively Coupled Plasma-Mass Spectrometry

College of Earth Sciences, Guilin University of Technology, Guilin 541006, China

Corresponding author: QIAN Jian-ping, jpjian@163.com

Received Date: 2020-04-15
Revised Date: 2020-08-06
Accepted Date: 2020-09-19

摘要:石榴子石是变质岩和岩浆岩中一种常见的硅酸盐矿物,其类质同象非常普遍。已有资料表明,不同成分的石榴子石的颜色颇为不同,但石榴子石的成分和颜色之间相互关系尚未进行系统研究和总结。本文应用电子探针、电感耦合等离子体质谱、X射线粉晶衍射、拉曼光谱、红外光谱和紫外可见吸收光谱等手段对常见的红色(G1)、橙色(G2)、绿色(G3)和褐红色(G4)石榴石进行了系统测试,旨在揭示石榴子石成分、结构和颜色的内在关系和变异规律,以期为不同地质体中产出的石榴子石矿物学特征的总结及地质应用提供依据。研究结果表明,G1、G4样品含有较多Fe元素(Fe3+:0.24%、0.24%;Fe2+:1.01%、0.89%);G2样品含有较高的Mn元素(2.76%);G3样品含有很高的Cr、V元素(3453×10-6、1458×10-6)。类质同象对石榴石的晶体结构产生影响,晶胞参数有较大差别,分别是a=11.530nm(G1)、11.563nm(G2)、11.849nm(G3)和11.470nm(G4)。石榴石中的微量元素和稀土元素对于示踪物源及形成过程具有很强的指示意义。石榴石中的稀土元素总量分布不均匀,LREE/HREE比值小于1,表现为重稀土元素富集,Eu/Eu*比值小于1,为Eu负异常。所有样品的Ce异常均不明显。石榴石样品的拉曼光谱呈现出峰强和峰位的明显差异也反映了类质同象的存在:G1、G4在570nm处出现Fe3+电子跃迁吸收峰;G2在460nm和520nm附近出现Mn2+电子跃迁吸收峰;G3在690nm处出现Cr3+电子跃迁吸收峰。紫外可见吸收光谱特征显示,红色和褐红色样品出现在570nm处的Fe3+电子跃迁吸收峰,与其成分中含有大量Fe有关;橙色样品于460nm和520nm附近的特征吸收峰归属于Mn2+,对应其主要成分中大量的Mn;绿色样品690nm处出现强的吸收峰,由Cr3+跃迁产生,是微量元素Cr的存在所致。研究结果表明,石榴石的颜色与其成分和结构具有良好的对应关系。

关键词: 石榴石, 类质同象替换, 稀土元素配分, 矿物学特征

要点

(1) 类质同象替换影响石榴石晶体结构,X射线粉晶衍射分析表明不同颜色的石榴石晶胞参数具有明显差异。

(2) 不同颜色石榴石的拉曼光谱、紫外可见吸收光谱特征与其特征元素具有良好的对应关系。

(3) 石榴石的LREE/HREE比值小于1,表现出对重稀土元素的晶格优选性。

Study on REE Distribution and Mineralogical Characteristics of Different Garnets by Electron Probe and Inductively Coupled Plasma-Mass Spectrometry

ABSTRACT

BACKGROUND:

Garnet is a common silicate mineral in metamorphic and magmatic rocks, and its isomorphism is very common. The existing data show that the color of garnet with different composition is quite different, but the relationship between the composition and color of garnet has not been systematically studied.

OBJECTIVES:

To reveal the internal relationship and variation law of garnet composition, structure and color, and provide a basis for the summary and geological application of the mineralogical characteristics of garnet in different geological environments.

METHODS:

Common red (G1), orange (G2), green (G3) and maroon (G4) garnet have been tested systematically by electron microprobe, inductively coupled plasma-mass spectrometry, X-ray powder crystal diffraction, Raman spectroscopy, infrared spectroscopy and ultraviolet-visible absorption spectroscopy.

RESULTS:

The results showed that the samples of G1 and G4 contained more Fe (Fe3+:0.24%, 0.24%, Fe2+:1.01%, 0.89%). The samples of G2 contained higher Mn (2.76%), whereas the samples of G3 have higher Cr and V contents of 3453×10-6 and 1458×10-6, respectively. Isomorphic substitution greatly affected the crystal structure of garnet. The cell parameters were a=11.530nm(G1), 11.563nm(G2), 11.849nm(G3) and 11.470nm(G4). Trace and rare earth elements in garnet can be used to indicate the source and formation process. The rare earth element analysis showed that the total rare earth elements of garnet were distributed unevenly, and the ratio of LREE/HREE was less than 1, with enriched heavy rare earth elements. The Eu/Eu* ratio was less than 1, which was a negative Eu anomaly. Ce abnormalities of all samples were not obvious. G1 and G4 have Fe3+ electronic transition absorption peak at 570nm. G2 has Mn2+ electronic transition absorption peak near 460nm and 520nm, whereas G3 has Cr3+ electronic transition absorption peaks at 690nm. The Raman spectra of garnet samples showed obvious differences in peak intensity and position, which also reflected the ubiquitous existence of isomorphism in these garnets. The ultraviolet-visible absorption spectra of these garnets showed high consistency with its color and characteristic elements. The absorption peaks of Fe3+ in red and maroon samples at 570nm were related to the high content of Fe, while the characteristic absorption peaks of orange sample near 460 and 520nm belong to Mn2+, corresponding to the large amount of Mn (2.76%). A strong absorption peak was observed at 690nm in the green sample, which was caused by the transition of Cr3+ and the presence of trace element Cr (3453×10-6). The results showed that the color of garnet had a good correspondence with its composition and structure.

CONCLUSIONS:

The color characteristics of garnet can be used as a typomorphic feature of minerals to indicate the existence of different characteristic elements. These methods can be used to study the isomorphism and color origin of garnet effectively.

KEY WORDS: garnet, isomorphic replacement, distribution of rare earth elements, mineralogy characteristics

HIGHLIGHTS

(1) Isomorphic substitution affected the crystal structure of garnet. X-ray powder diffraction analysis showed that the cell parameters of garnet with different colors had obvious differences.

(2) The Raman spectra and UV-Vis absorption spectra of garnets with different colors had good correspondence with their characteristic elements.

(3) The LREE/HREE of garnet was less than 1, indicating that garnet had lattice preference for HREE.

本文参考文献

[1]

冯晓燕, 沈美冬, 张勇, 等. 软玉中的一种绿色斑点——钙铝榴石[J]. 岩矿测试, 2013, 32(4): 608-612.

Feng X Y, Shen M D, Zhang Y, et al. The green spots in nephrite-Grossularite[J]. Rock and Mineral Analysis, 2013, 32(4): 608-612.

[2]

梁祥济. 钙铝榴石-钙铁系列石榴子石的特征及其交代机理[J]. 岩石矿物学杂志, 1994, 13(4): 342-352.

Liang X J. Garnets of grossular-andradite series:Their characteristics and metasomatic mechanism[J].Acta Petrologica et Mineralogica, 1994, 13(4): 342-352.

[3]

Stockton C M, Manson D V. A proposed new classification for gem-quality garnets[J]. Gems and Gemology, 1985, 21(4): 205-218.

[4]

应立娟, 唐菊兴, 王登红, 等. 西藏甲玛超大型铜矿石榴子石特征及成因意义[J]. 地质学报, 2012, 86(11): 1735-1747.

Ying L J, Tang J X, Wang D H, et al. Features of garnet in the Jiama super-large Cu polymetallic deposit and its genetic significance[J]. Acta Geologica Sinica, 2012, 86(11): 1735-1747.

[5]

郑伟, 陈懋弘, 赵海杰, 等. 广东省天堂铜铅锌多金属矿床夕卡岩矿物学特征及其地质意义[J]. 岩石矿物学杂志, 2013, 32(1): 23-40.

Zheng W, Chen M H, Zhao H J, et al. Skarn mineral characteristics of the Tiantang Cu-Pb-Zn polymetallic deposit in Guangdong Province and their geological significance[J]. Acta Petrologica et Mineralogica, 2013, 32(1): 23-40.

[6]

姚远, 陈俊, 陆建军, 等. 华南三类含钨锡夕卡岩中石榴子石的成分、微量元素及红外光谱[J]. 矿物学报, 2013, 33(3): 315-328.

Yao Y, Chen J, Lu J J, et al. Composition, trace element and infrared spectrum of garnet from three types of W-Sn bearing skarns in the South of China[J].Acta Mieralogica Sinica, 2013, 33(3): 315-328.

[7]

刘春蕊, 陈美华, 潘少逵, 等. 一种钙铁质锰铝榴石的宝石矿物学特征[J]. 宝石和宝石学杂志, 2018, 20(4): 10-15.

Liu C R, Chen M H, Pan S K, et al. Gemmological and mineralogical characteristics of calcareous and iron spessartine[J]. Journal of Gems & Gemmology, 2018, 20(4): 10-15.

[8]

陈涛, 刘云贵, 尹作为, 等. 黑龙江穆棱地区宝石级石榴石的宝石学及谱学特征[J]. 光谱学与光谱分析, 2013, 33(11): 2964-2967.

Chen T, Liu Y G, Yin Z W, et al. Gemology and spectra characterization of gem garnet from Muling City, Heilongjiang Province[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 2964-2967.

[9]

罗跃平, 郑秋菊, 王春生, 等. 石榴石的品种及鉴定[J]. 宝石和宝石学杂志, 2015, 17(3): 36-42.

Luo Y P, Zheng Q J, Wang C S, et al. Variety and identification of garnet[J]. Journal of Gems & Gemmology, 2015, 17(3): 36-42.

[10]

陈丁滢. 运用X射线荧光光谱法对石榴石分类鉴定[J]. 上海计量测试, 2007, 34(6): 11-13.

Chen D Y. Make use of X-ray fluorescence spectrum to classify and identify the garnet[J]. Shanghai Measurement and Testing, 2007, 34(6): 11-13.

[11]

聂飞, 董国臣, 王霞, 等. 太行山北段浮图峪矿田石榴子石环带特征研究[J]. 岩矿测试, 2014, 33(3): 439-449.

Nie F, Dong G C, Wang X, et al. The zoning characteristics of garnets in the Futuyu orefield of the northern Taihang Mountain[J]. Rock and Mineral Analysis, 2014, 33(3): 439-449.

[12]

刘琰, 邓军, 王丽华, 等. 大型光谱仪器在翡翠检测中的应用[J]. 光谱学与光谱分析, 2006, 26(3): 577-582.

Liu Y, Deng J, Wang L H, et al. Application of large-scale spectrometers in the detection of jadeite[J]. Spectroscopy and Spectral Analysis, 2006, 26(3): 577-582.

[13]

刘琰, 邓军, 邢延炎, 等. 白钨矿的振动光谱与颜色成因初探[J]. 光谱学与光谱分析, 2008, 28(1): 121-124.

Liu Y, Deng J, Xing Y Y, et al. Vibrational spectra of scheelite and its solor genesis[J]. Spectroscopy and Spectral Analysis, 2008, 28(1): 121-124.

[14]

刘琰, 沈战武, 邓军, 等. 锡石振动光谱特征与矿物成因类型[J]. 光谱学与光谱分析, 2008, 28(7): 1506-1509.

Liu Y, Shen Z W, Deng J, et al. Vibration spectra and genetic type of gassiterites[J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1506-1509.

[15]

杨晓丹, 施光海, 刘琰, 等. 新疆和田黑色透闪石质软玉振动光谱特征及颜色成因[J]. 光谱与光谱学分析, 2012, 54(14): 681-685.

Yang X D, Shi G H, Liu Y, et al. Vibrational spectra of black species of Hetian nephrite (Tremolite jade) and its color genesis[J]. Spectroscopy and Spectral Analysis, 2012, 54(14): 681-685.

[16]

范建良, 刘学良, 郭守国, 等. 石榴石族宝石的拉曼光谱研究及鉴别[J]. 应用激光, 2007, 27(4): 310-313.

Fan J L, Liu X L, Guo S G, et al. Study on Raman spectra of garnets and relative identification[J]. Applied Laser, 2007, 27(4): 310-313.

[17]

Bersani D, Andò S, Vignola P, et al.Micro-Raman determination of the composition of ugrandite garnets[C]//AIP Conference Proceedings, 2009, doi: 10.1063/1.3222891.

[18]

吴菲, 张晓超, 朱仲良, 等. 石榴石金属离子含量与拉曼位移的定量关系研究[J]. 光散射学报, 2015, 27(4): 350-354.

Wu F, Zhang X C, Zhu Z L, et al. Quantitative relation between Raman shift and metal ion content in garnet[J]. The Journal of Light Scattering, 2015, 27(4): 350-354.

[19]

王锦荣, 王一铭, 张大骞, 等. 红外吸收光谱特征对石榴石种属及颜色成因的指示——以一颗黄色石榴石为例[J]. 宝石和宝石学杂志, 2020, 22(1): 20-25.

Wang J R, Wang Y M, Zhang D Q, et al. FTIR investigation of Garnet:Indification for specific species and coloration:A case study of a yellow garnet[J]. Journal of Gems & Gemmology, 2020, 22(1): 20-25.

[20]

刘翠红, 陈超洋, 邵天, 等. 变色石榴石的紫外-可见吸收光谱与3D荧光光谱研究[J]. 光谱学与光谱分析, 2020, 40(7): 2148-2152.

Liu C H, Chen C Y, Shao T, et al. UV-Vis absorption spectra and 3D fluorescence spectra study of color-change garnet with red fluorescence[J].Spectroscopy and Spectral Analysis, 2020, 40(7): 2148-2152.

[21]

刘春花, 杨林, 尹京武, 等. 新疆库鲁克塔格兴地塔格群中石榴石的矿物学特征研究[J]. 岩石矿物学杂志, 2011, 30(2): 234-242.

Liu C H, Yang L, Yin J W, et al. Mineralogical characteristics of garnets from Xingditage Group of Kuruk Tag, Xinjiang Acta[J]. Petrologica et Mineralogica, 2011, 30(2): 234-242.

[22]

陈武, 钱汉东. 石榴石族宝石矿物的产状和成因[J]. 宝石和宝石学杂志, 2000, 2(4): 33-37.

Chen W, Qian H D. Genesis and occurrence of group of garnet gem mineral[J]. Journal of Gems & Gemmology, 2000, 2(4): 33-37.

[23]

Irving A. A review of experimental studies of crystal/liquid trace element partitionin[J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 743-770.

[24]

Pride C, Muecke G K. Rare earth element distributions among coexisting granulite facies minerals, Scourian Complex, NW Scotland[J]. Contributions to Mineralogy and Petrology, 1981, 76: 463-471.

[25]

Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72: 185-205.

[26]

刘晓菲, 袁顺达, 双燕, 等. 湖南金船塘锡铋矿床石榴子石原位LA-ICP-MS稀土元素分析及其意义[J]. 岩石学报, 2014, 30(1): 163-177.

Liu X F, Yuan S D, Shuang Y, et al. In situ LA-ICP-MS REE analyses of the skarn garnets from the Jinchuantang tin-bismuth deposit in Hunan Province, and their significance[J]. Acta Petrologica Sinica, 2014, 30(1): 163-177.

[27]

Boyd F R, Pearson D G, Hoal K O, et al. Garnet lherzolites from Louwrensia, Namibia:Bulk composition and P/T relations[J]. Lithos, 2004, 77(1-4): 573-592.

[28]

Alessandra S, Simona Q, Federico B, et al. Fe2+-O and Mn2+-O bonding and Fe2+-and Mn2+-vibrational properties in synthetic almandine-spessartine solid solutions[J].European Journal of Mineralogy, 2004, 16(5): 801-808.

[29]

Hofmeister A M, Fagan T J, Campbell K M, et al. Single-crystal IR spectroscopy of pyrope-almandine garnets with minor amounts of Mn and Ca[J]. American Mineralogist, 1996, 81(3-4): 418-428.

[30]

Moore R K, White W B, Long T V, et al. Vibrational spectra of the common silicates:Ⅰ.The garnets[J]. American Mineralogist,, 1971, 56: 54-71.

[31]

王奎仁, 彭捷, 杨学明, 等. 我国某些矽卡岩型矿床中石榴石的波谱学研究[J]. 安徽地质, 1992, (4): 1-12.

Wang K R, Peng J, Yang X M, et al. Spectroscopic study of garnet in some skarn deposits in China[J]. Geology of Anhui Province, 1992, (4): 1-12.

[32]

何谋春, 洪斌, 吕新彪, 等. 钙铝榴石-钙铁榴石的拉曼光谱特征光[J]. 散射学报, 2002, 14(2): 121.

He M C, Hong B, Lü X B, et al. The feature of Raman spectra of grossular-andradite[J]. Chinese Journal of Light Scattering, 2002, 14(2): 121.

[33]

向亭译. 浅析铬钒钙铝榴石的颜色成因[J]. 科学技术与工程, 2012, 12(30): 7995-7998.

Xiang T Y. Analysis of chrome vanadium grossular color genesis[J].Science Technology and Engineering, 2012, 12(30): 7995-7998.

相似文献(共20条)

[1]

廖宗廷, 周征宇, 李玉加, 陈盈, 马婷婷. 青海软玉的岩石矿物学特征. 岩矿测试, 2008, 27(1): 17-20.

[2]

迟广成, 李国武, 肖刚, 陈英飞, 伍月, 汪寅夫, 胡建飞. 辽宁瓦房店金伯利岩中石榴石特征及种类鉴定. 岩矿测试, 2013, 32(1): 78-83.

[3]

刘明军, 李厚民, 李立兴, 杨秀清, 姚良德, 洪学宽, 陈靖. 辽宁弓长岭铁矿床二矿区类矽卡岩的岩石矿物学特征. 岩矿测试, 2012, 31(6): 1067-1076.

[4]

乔鑫, 周征宇, 农佩臻, 赖萌, 李英搏, 郭恺鹏, 钟倩, 王含, 周彦. 贫碱结构水类型祖母绿红外光谱特征及其控制因素探究. 岩矿测试, 2019, 38(2): 169-178. doi: 10.15898/j.cnki.11-2131/td.201804070039

[5]

王轶, 常娜, 刘亚非, 赵慧博, 刘三. 应用X射线衍射-激光拉曼-电子探针等分析测试技术研究旬阳朱砂玉的矿物学特征. 岩矿测试, 2014, 33(6): 802-807. doi: 10.15898/j.cnki.11-2131/td.2014.06.007

[6]

戴婕, 张林奎, 潘晓东, 石洪召, 陈敏华, 王鹏, 张斌辉, 张茜, 金斌, 任静. 滇东南南秧田白钨矿矿床矽卡岩矿物学特征及成因探讨. 岩矿测试, 2011, 30(3): 269-275.

[7]

顾冬红, 干福熹, 马波, 伏修锋, 赵虹霞. 不同产地绿松石无损检测及岩相结构特征研究. 岩矿测试, 2007, 26(2): 141-144.

[8]

邓仕侬, 吴学汉, 李慕洁, 叶庆同. 广东尖山铁矿床中石榴石的标型特征和找矿意义. 岩矿测试, 1983, (3): 190-196.

[9]

严俊, 胡仙超, 方飚, 陶金波, 彭秋瑾, 张俭. 应用XRF-SEM-XRD-FTIR等分析测试技术研究丽水蓝色类欧泊(蛋白石)的矿物学与光学特征. 岩矿测试, 2014, 33(6): 795-801. doi: 10.15898/j.cnki.11-2131/td.2014.06.006

[10]

周彦, 亓利剑, 戴慧, 张青, 蒋小平. 安徽马鞍山磷铝石宝石矿物学特征研究. 岩矿测试, 2014, 33(5): 690-697.

[11]

梁述廷, 刘玉纯, 刘瑱, 林庆文, 刘志伟. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用. 岩矿测试, 2015, 34(2): 201-206. doi: 10.15898/j.cnki.11-2131/td.2015.02.008

[12]

王含, 周征宇, 钟倩, 刘瑞婷, 刘琦, 李英博. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征. 岩矿测试, 2016, 35(1): 56-61. doi: 10.15898/j.cnki.11-2131/td.2016.01.010

[13]

孟长峰, 薛俊辉. X射线荧光光谱-X射线衍射研究宁夏贺兰石岩石矿物学特征. 岩矿测试, 2018, 37(1): 50-55. doi: 10.15898/j.cnki.11-2131/td.201709050141

[14]

汤志云, 江冶, 汪建明, 张梅, 乔爱香, 肖灵, 曹磊. 硅孔雀石和透视石稀土元素地球化学特征及其成矿环境研究. 岩矿测试, 2015, 34(4): 408-413. doi: 10.15898/j.cnki.11-2131/td.2015.04.005

[15]

陈图华. 湖南柿竹园钨锡铋钼(铍)矿床中石榴石的研究. 岩矿测试, 1985, (2): 123-131.

[16]

王福泉. 江苏某含铬镁铝榴石的宝石矿物学研究. 岩矿测试, 1984, (1): 33-39.

[17]

余晓艳. 山东蓝宝石的宝石矿物学特征. 岩矿测试, 1999, (1): 41-.

[18]

聂飞, 董国臣, 王霞, 朱华平. 太行山北段浮图峪矿田石榴子石环带特征研究. 岩矿测试, 2014, 33(3): 444-454.

[19]

何煦, 陈林, 李青会, 顾冬红, 干福熹, 李飞, 李珍. 竹山和马鞍山绿松石微量元素和稀土元素特征. 岩矿测试, 2011, 30(6): 709-713.

[20]

段凯波, 王登红, 何汉江, 郑国栋, 熊先孝, 袁建国, 贺宝宝, 屈云燕. 应用电感耦合等离子体质谱/光谱法研究上扬子区新华磷块岩稀土元素特征及沉积学意义. 岩矿测试, 2015, 34(2): 261-267. doi: 10.15898/j.cnki.11-2131/td.2015.02.018

计量
  • PDF下载量(15)
  • 文章访问量(481)
  • HTML全文浏览量(63)
  • 被引次数(0)
目录

Figures And Tables

电子探针-电感耦合等离子体质谱法研究不同种类石榴石的稀土元素配分和矿物学特征

贾玉衡, 钱建平